

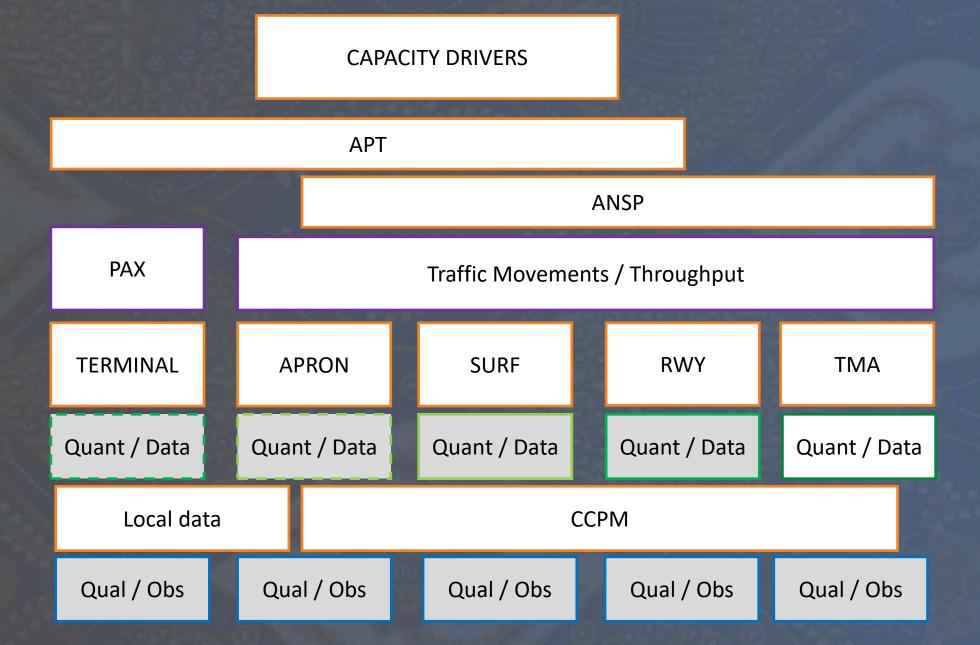
ACAP Airport Capacity and Assessment Performance Methodology

Models to Determine Airport Capacity

Valerio Cappellazzo EUROCONTROL NM Airport Operations

Assessment & Enhancement

- Airside/Runway Capacity/ Throughput Assessment
- Aerodrome Capacity Assessment


- Current situation (Summer peak)
- Future traffic

- Quantitative
 - Traffic data
 - Passenger data
- Qualitative
 - Ops feedback
 - Survey

- Short-term (capacity management)
- Long-term (capacity enhancement)

Scope

NM ACAP Process

1. Request received Understanding the request background/scope / capacity needs (+ questionnaires)

Request feasibility evaluation

4.
Support framework agreement

5.
KoM +
Airport ops context
data gathering

7.
RWY throughput assessment

8. Surface assessment

9. Landside processes (optional)

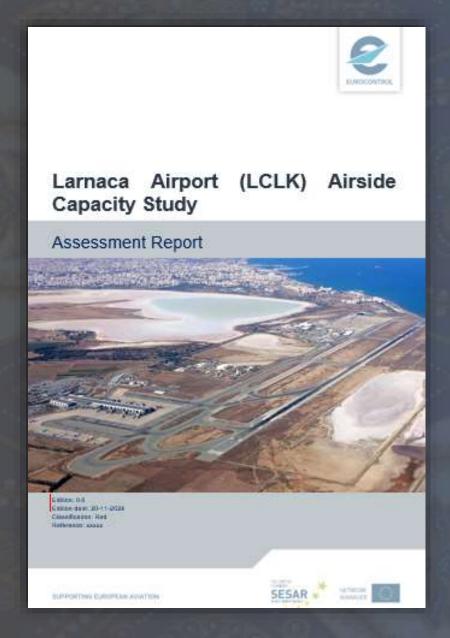
> 10. ATC Tower HF (optional)

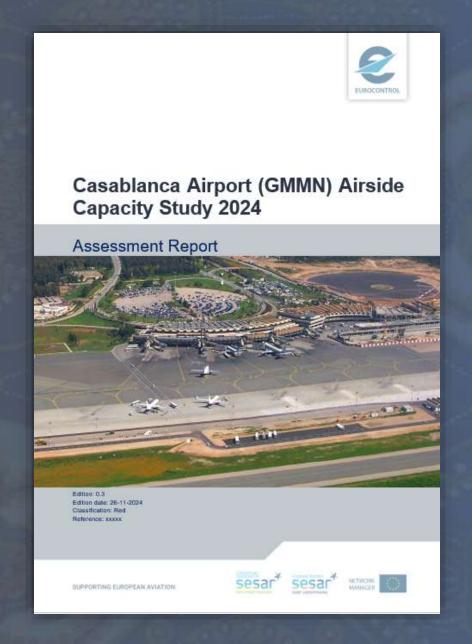
> > 11.
> > Operational feedback/observations

12. Capacity evaluation

13.
Recommendations /
Results Presentation

14. Stakeholder consultation


15. Satisfaction survey


16. Follow-up of Recs impl.

ICAO &

6
Data collection / (CCPM)

ACAP recent studies

1. Understanding the request context

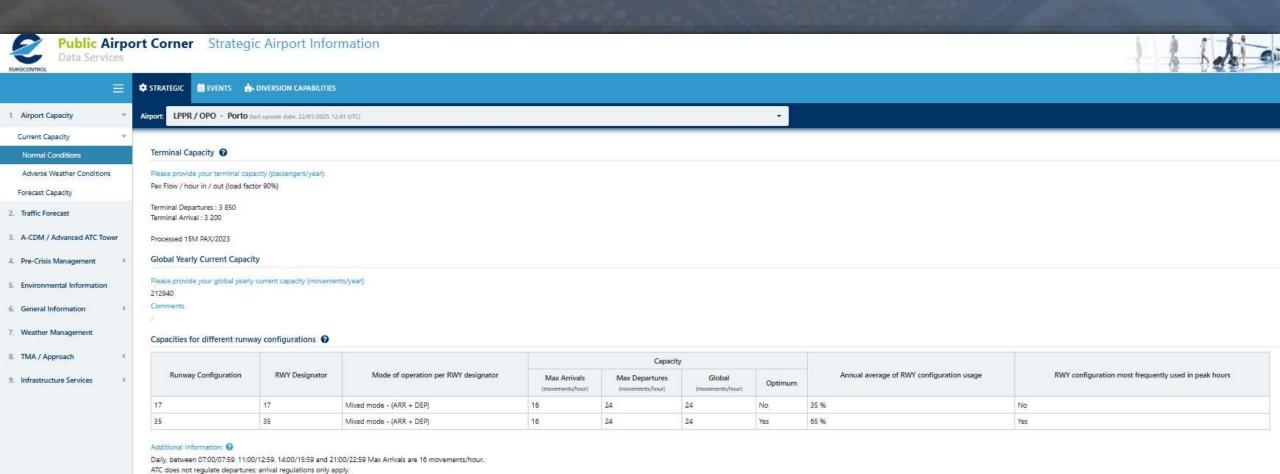
Capacity & Performance needs?

Traffic evolution / growth

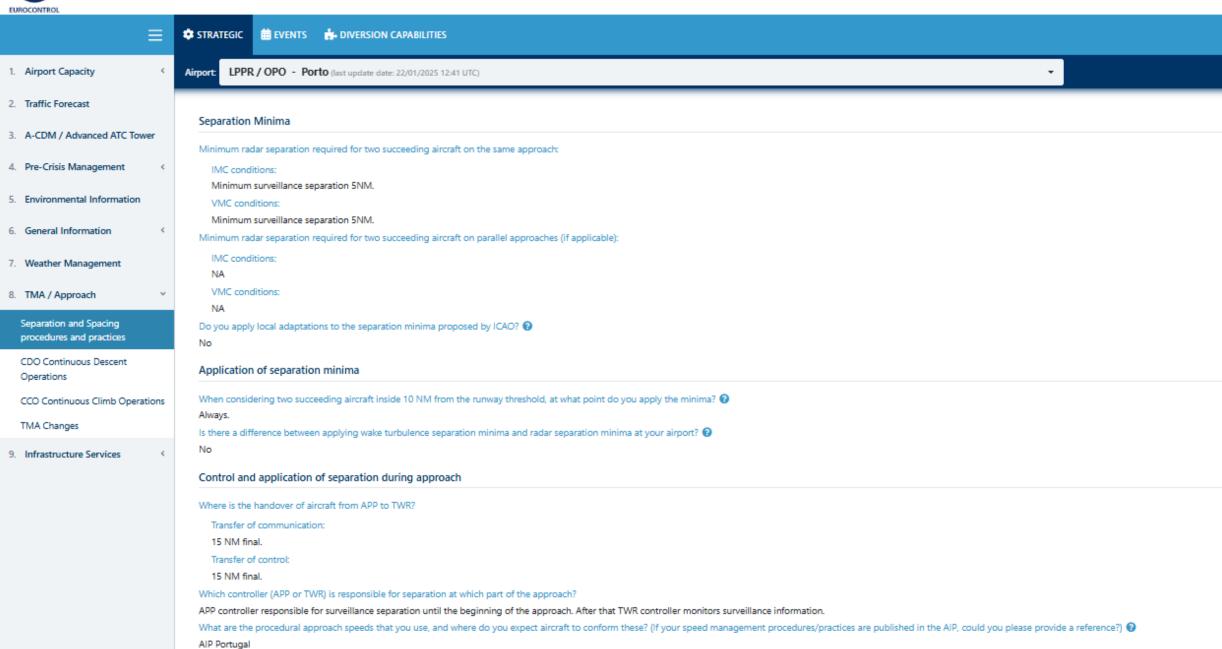
Infrastructure development

Operational limitations

Delay impact



Francisco Sá Carneiro Airport, Porto, Portugal


LPPR

Francisco Sá Carneiro Airport, Porto, Portugal

ENR 1.5-2 (1.5.5)

3a. Last Summer delay assessment based on NM data

ICAO

Departure and arrival punctualities

Monthly evolutions

Number of departures

-NOME OF	JUNE				JULY		AUGUST			SUMMER			
BILLIA	2024	2023	%	2024	2023	%	2024	2023	%		2024	2023	%
Ndep	12006	10810	11%	13206	11811	12%	13124	11830	11%		38336	34451	11%

4%

Network

Punctualities

-	JUNE				JULY		AUGUST			SUMMER		
	2024	2023	%	2024	2023	%	2024	2023	%	2024	2023	%
Departure punctuality	65%	63%	2%	58%	57%	1%	63%	63%	0%	62%	61%	1%
Arrival punctuality	57%	57%	1%	49%	54%	-5%	54%	61%	-8%	53%	57%	-4%

Network

	SUMMER					
	2024	2023	%			
Departure punctuality	57%	58%	-1%			
Arrival punctuality	65%	66%	-1%			

Departure delays

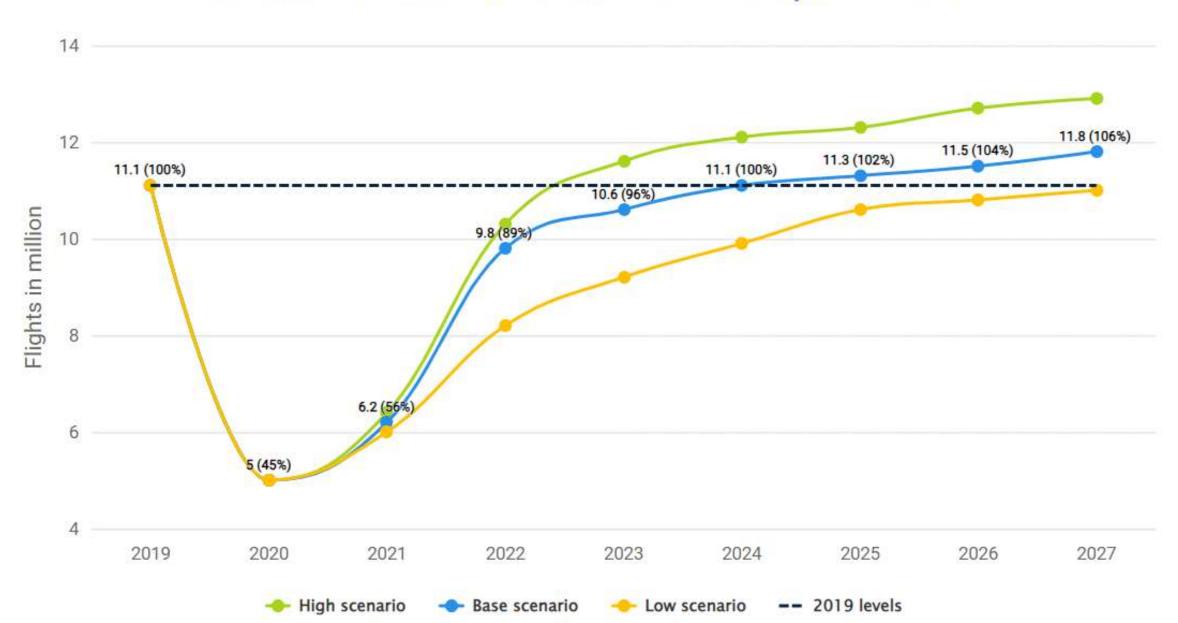
Detailed per airline operating at specific Airport during Summer 2024

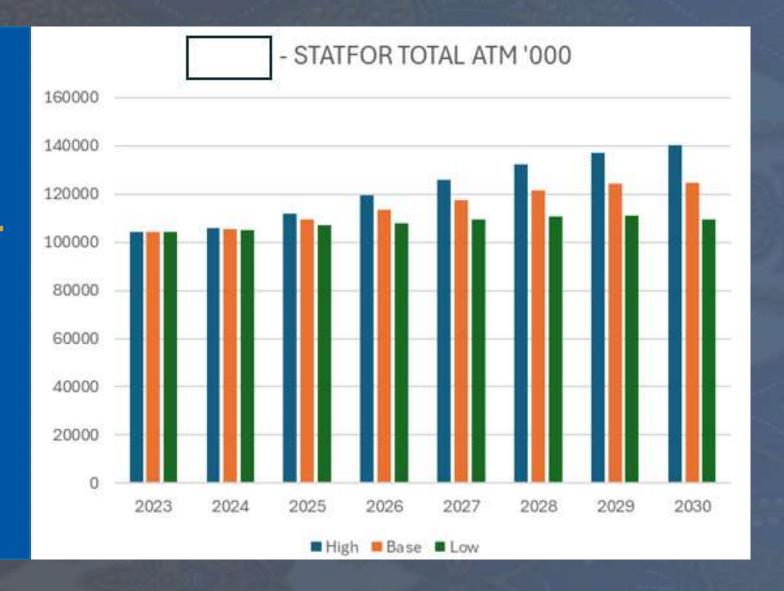
operator	Ndep	Traffic ratio	average dep delay [min]	average ground delay [min]	average dep delay due to ATFM EnRoute weather [min]	average dep delay due to ATFM EnRoute non- weather [min]	average dep delay due to ATFM Arrival weather [min]	average dep delay due to ATFM Arrival non- weather [min]	average
All airlines	38336	100%	19.1	3.1	1.3	1.7	0.1	0.6	12.1
	458	1%	32.3	5.5	7.0	4.5	1.0	0.6	13.7
	14086	37%	15.2	3.3	0.7	1.0	0.1	0.7	9.4
	578	2%	30.2	2.8	3.0	2.4	0.3	0.8	20.9
	1130	3%	21.3	2.6	0.7	1.1	0.0	1.5	15.4
	407	1%	23.5	2.3	2.0	0.8	0.6	0.2	17.7
	2655	7%	10.3	2.3	0.0	0.4	0.0	0.2	7.4
	654	2%	30.4	2.1	4.3	3.0	0.8	0.2	20.1
	6476	17%	11.2	2.1	0.4	0.7	0.0	0.9	7.2
	1632	4%	32.2	1.9	3.4	3.8	0.1	0.4	22.6
	516	1%	25.5	0.9	2.5	2.4	0.0	0.3	19.4
Remaining airlines	9744	25%	27.4	4.2	2.4	3.4	0.1	0.5	16.8

ICA0

3b. Traffic Evolution forecast

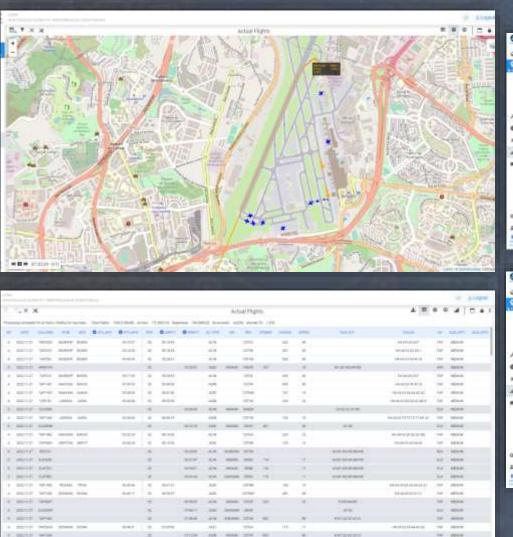
Traffic forecast through the Agency Statistics and Forecast Service, STATFOR

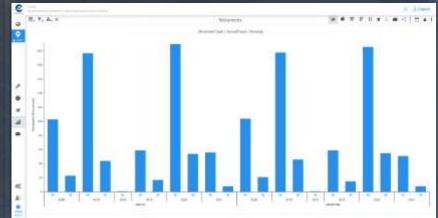

- STATFOR develops a medium- and long-term forecast
 - 2 year forecast (updated 3 times a year)
 - 7 year forecast (updated 2 times a year)
 - 20 year forecast (updated every 2 years), starts where 7 year forecast ends



EUROCONTROL 7-year forecast for *Europe 2021-2027

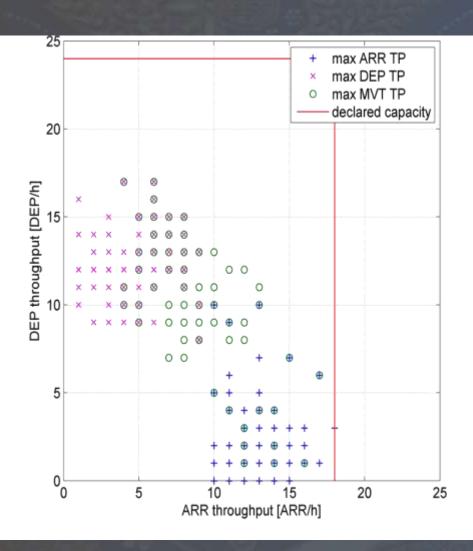
Actual and future IFR movements, % traffic compared to 2019

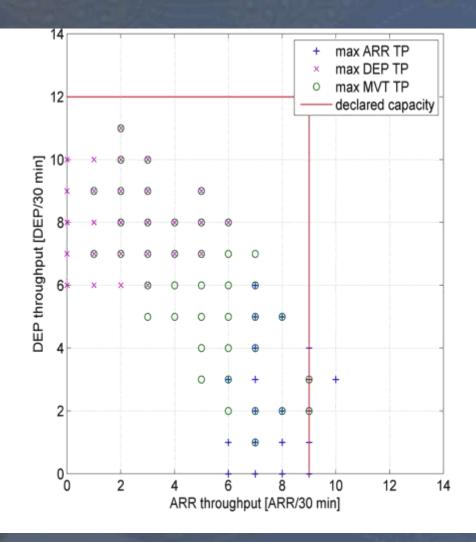

LOCAL FORECAST FROM STATFOR



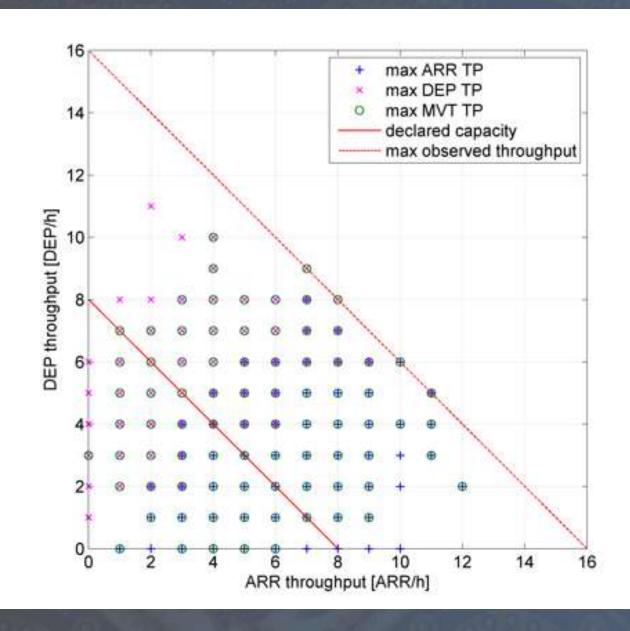
4. Quantitative analysis – Airside current operations

EUROCONTROL'CCPM' Service Continuous Capacity and Performance Monitoring

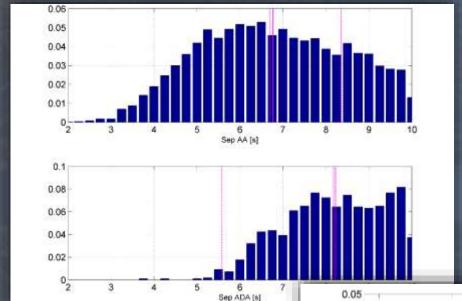

ICAO@

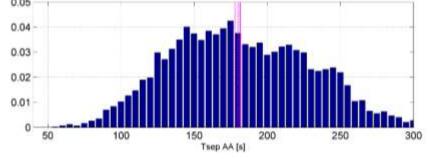

Traffic Analysis

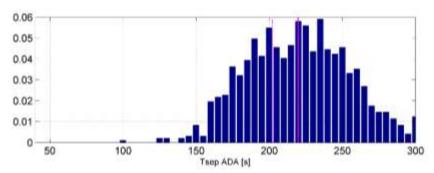
- Traffic
 - Average monthly, daily, hourly
 - Mix
 - Operators share
 - Patterns (AA/DD, ADA)
- Runway use
- Max observed throughput in peak
- Arrival throughput
- Departure throughput
- ROT-A
- Runway exit usage
- ROT-D
- Runway entries usage
- Separation delivery
 - Distance spacing distribution
 - Time spacing distribution
- Surface throughput / Taxi pressure



Airport throughput profile – RWY X

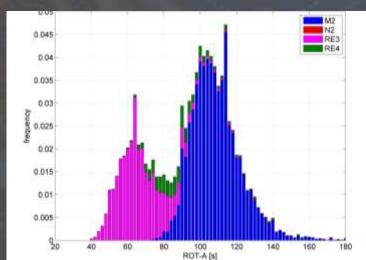




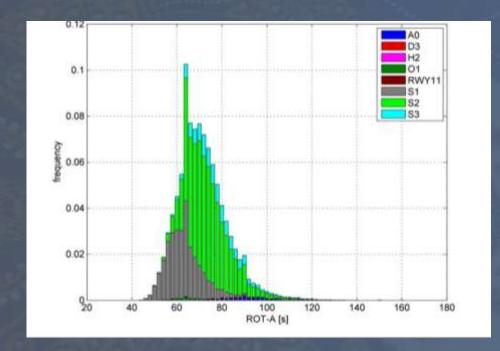

Airport throughput profile – RWY X

Runway Throughput / Use Statistics

- Runway throughput
 - > Segregated mode
 - > Dependent operations
 - > Mixed mode
- Arrival separation/spacing
 - > Air separation
 - > ROT-A
- Departure spacing
 - ➤ Air separation
 - > ROT-D



Runway - Exits and ROT


RWYXX ROT-A recorded across the reporting period

RWY EXIT Utilization					
Exit	All months				
N2	0.4%				
M2	62.5%				
RE4 /W1	6.0%				
RE3 / P2	31.1%				

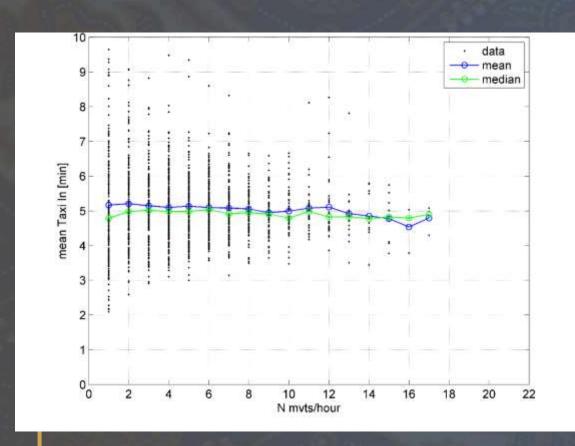
Mean ROT [s] WTC							
WTC	All pairs	Constrained pairs					
J	110.8	112.7					
Н	109.4	109.1					
М	92.0	92.6					
L	102.4	100.7					

Mean ROT[s) Exit					
Exit	Mean ROT- A [s]				
N2	132.7				
M2	109.3				
RE4 / W1	88.0				
RE3 / P2	67.3				

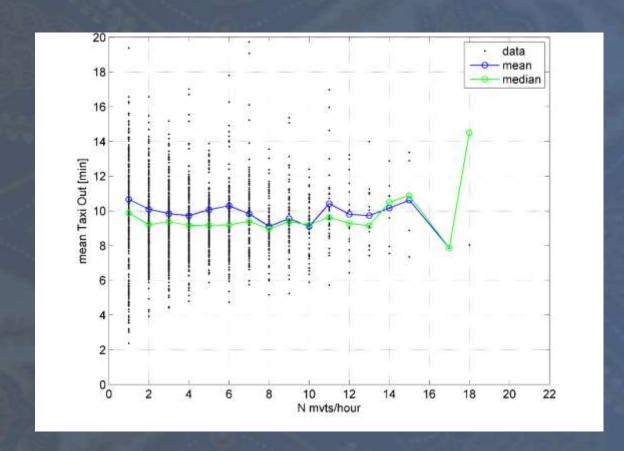
i	RWY EXIT Utilization						
	Exit	All months					
	A0	1.5%					
	S3 (RET)	10.5%					
	D3	1.5%					
	S2 (RET)	57.3%					
	S1 (RET)	29.2%					

Mean ROT[s) Exit					
Exit	Mean ROT-A				
A0	96.7				
S3	77.3				
D3	87.5				
S2	73.8				
01	66.5				
S 1	63.3				
RWY11	63.4				

ROT-A Analysis


Average ROT / distribution

- ☐ Per airport
- ☐ Per runway
- ☐ Per QFU
- ☐ Per aircraft type
- Per operator
- ☐ Per runway exit
- ☐ Per runway braking conditions (GRF) (complementary analysis)



Taxi-in /-out time Analysis - Performance as function of ATMs

RWY xx Taxi – in performance

RWY xx Taxi – out performance



Quantitative analysis - Landside process (optional)

ICAO

Landside Processing

Analytical model is under development and validation

Landside Processing | High level Inputs and Outputs

Inputs

Processing facilities

Operations concept

Process design

Process data

Passenger profiles

Waiting time targets

Outputs

Show up against various facilities – based on FLT SCH Calculated processor demand Calculated Waiting Time Calculated Qmax

- Pilot case with TIA Tirana
 - > Further validation of some parameters with TIA

5. Qualitative - Operational Challenges

ICAO

CAO

Example - Push-back management

Surface procedures

What is Human Factors?

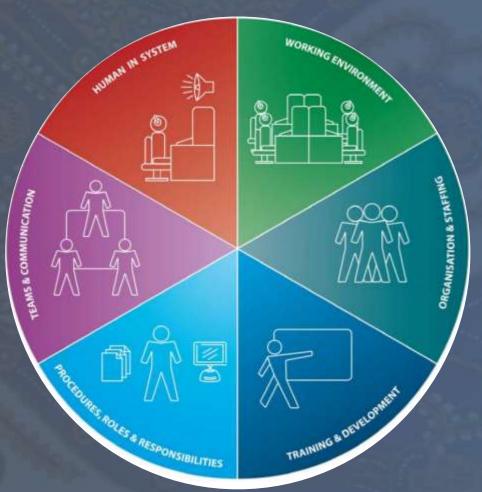
Human Factors (HF) is:

- the study of human performance in terms of human strengths, capabilities and limitations, expectations as well as factors that influence human performance either positively or negatively.....
-and the application of this knowledge to the design of work systems, methods / processes / procedures and environments to optimise overall system performance and safety (as well as well-being)

ICAO

enter you<mark>r presentation title 35</mark>

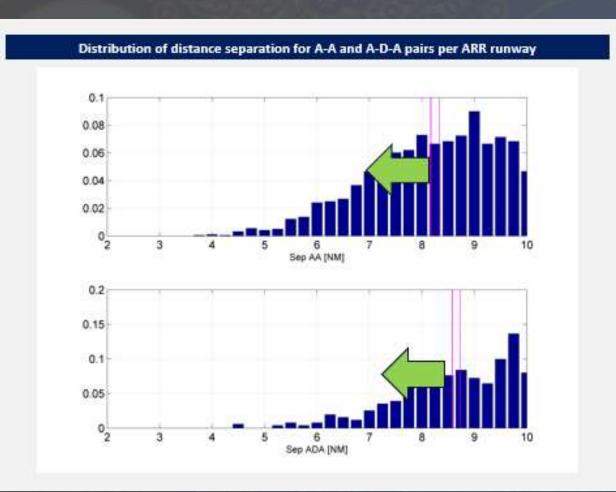
What is Human Factors?

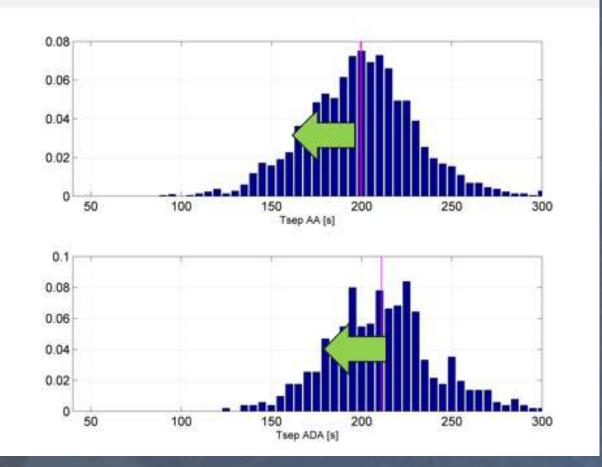

ICAO definition: "HF is concerned with the application of what we know about human beings, their abilities, characteristics and limitations, to the design of equipment they use, environments in which they function and jobs they perform."

What is a Human Factors assessment?

- A Human Factors (HF) assessment is a systematic process to identify, assess and manage human factors issues / aspects in the work environment (current or future) during a project life cycle
- The HF issues / aspects considered in a HF assessment cover several different areas of work:

Excerpt from the EUROCONTROL HF Case


Why do a Human Factors assessment?



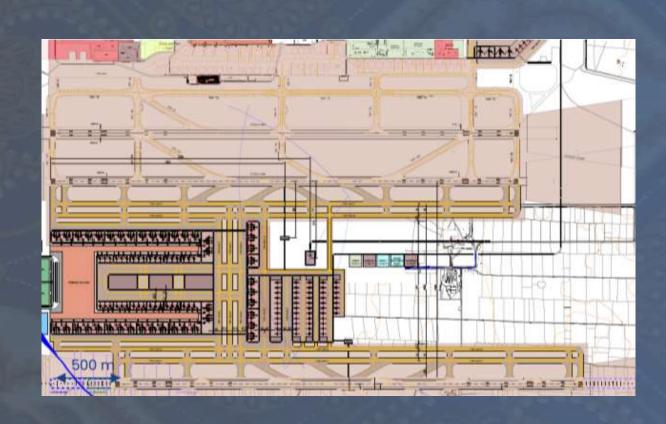
- In ATM, the role of the human is central: ATCOs are an integral part of the system
- If human / ATCO performance is negatively impacted or not optimised then the performance of the system as a whole will be impacted
- ATCO workload is often cited as a constraint that limits the number of a/c that can be handled per hour
- Hence, human performance and the role and tasks of the ATCOs in the tower are key components that can impact operations
-and so, the need for a HF assessment should be considered when performing an airport capacity and performance study
- Furthermore, if significant changes to operations are proposed, a HF assessment should be performed as part of the safety case in accordance with EASA regulation 373

6. Projection for Runway Capacity / Throughput enhancement

Runway- Arrival Peak Observed Separation

7. Capacity / Throughput Enhancement Scenarios

ICAO 🕉


Scenario: Operations and capacity with future 3-Runway System (3RS)

1st Option) New RWY primarily use in segregated mode (ARR or DEP only)

- Keep separation minima to 5NM
- Reduce separation minima to 3NM (with suitable RET and surveillance capabilities)

2nd Option) New RWY primarily used in mixed mode

- Keep separation minima to 5NM
- Reduce separation minima to 3NM (with suitable RET and surveillance capabilities)

8. Capacity / Throughput Enhancement Solution Recommendations

Airside Optimisation

- → Stakeholders collaboration
- → Data / info exchanges
- → Operational / Procedures
- → System / Automation support
- → Infrastructure

Targets Status

Consistent A-A separation delivery to 5NM radar minimum for arrival pairs in a sequence to Runway

Recommendations – Example RWY Operations

1. Facilitate separation 5NM separation delivery by APP control with supporting system and procedure enhancement - See REC 2024-XXXX-01

2. Enable further reduction of A-ROT average and distribution, for increased margin for clearance to land –

See REC 2024-XXXX-02

3. Evolve ATC Tower control roles with introduction of 2nd executive controller, for either clearance delivery (DEL) and/or Ground (GND) control, relieving workload from the runway (RWY) / local (LOC) controller (consider feasibility of dual qualification of APP & TWR controller rating), and best practices for staffing and shift arrangements. Review procedures for the schedule and frequency of runway inspections, to align on best practices from other European airports - See REC 2024-XXXX-09

4. Implement a new intermediate parallel taxiway between the XX and YY, to allow landing traffic on XX to vacate, and have buffer area for holding before crossing departure runway YY, while clearing the runway exit

See **RÉC 2024-XXXX-03**

ACAP-2024-GMMN-02- Reducing arrival runway occupancy time on existing RWY 35L (and 17R)
See REC 2024-XXXX-02 and REC-2024-XXXX-05

1. Publish in AIP the recommendation to minimize runway occupancy time, with preferred / suggested exits for vacation after landing per category of aircraft and associated distance from landing threshold
2. Organize an awareness campaign for AO and Flight Crews, to tactically plan, prepare and execute safe and efficient braking to vacate the runway in most efficient manner
3. Implement a new RET between ZZ & WW, located such to minimize A-ROT for Medium category / Narrowbody jets (A320 family & B737 family), - or a displaced landing threshold such that WW distance is reduced to around 2000m, that can suit both code-C and code-E aircraft
4. Implement a new RET before QQ on RWY XX, located such to minimize A-ROT for Medium category/Narrowbodies

category/Narrowbodies

ICA0

Targets Status REC-2024-XXXX-12- Runway and surface post-operations performance review using CCPM 1. Review periodically ROT-A per operator and communicate target occupancy. 2. Review periodically Taxi in and Out performance times per operator 3. Report cases, review, and communicate cases of slow reaction times by Flight deck crew. Rationale: See **OBS 2024-XXXX-18**, See ground traffic pressure analysis. REC-2024-XXXX-13- Airport-wide formal Capacity review process 1. Monitor traffic growth trends and conduct periodic assessments to ensure terminal processors continue to meet future demand. 2.As best practice from WASG (Worldwide Airport Scheduling Guidelines), formal capacity reviews every 2 years or ad-hoc with major change in processes, people, or infrastructure. Rationale: see OBS 2024-XXXX-14, OBS 2024-XXXX-19 **REC-2024-XXXX-14 - Landside Performance review process** 1. Analyze transfer passenger flows to identify opportunities for optimizing turnaround times and enhancing transfer efficiency. Rationale: see OBS 2024-GMMN-11; OBS 2024-GMMN-12, OBS 2024-GMMN-17

Recommendation – Post-operations

Operational Enhancements

Airport Infrastructure Use

HIRO - AIP Publication

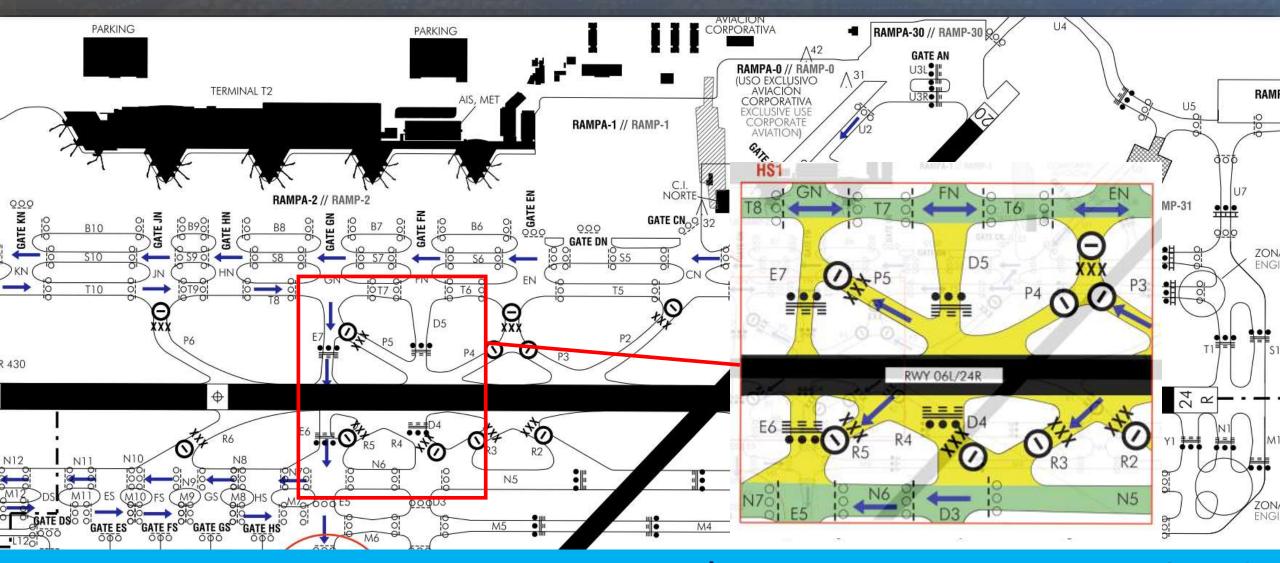
1.2.5.3 In order to ensure a minimum RWY occupancy time, it is recommended to name the expected high-speed turn-off during the approach briefing (Cockpit).

bevorzugte Abrollwege / preferred turn-offs

TYPE CLASS	RWY 07C	RWY 07R	RWY 25C	RWY 25L
HEAVY	L9	M13	L13	M21 (except A380)
Distance to turn-off	2500	2150	2100	2300
MEDIUM (JET) Distance to turn-off	L11	M15	L10	M17
	1800	1700	1850	1850
MEDIUM (PROP) LIGHT	L11	M15	L8	M11
Distance to turn-off	1800	1700	1150	1100

Alle Entfernungsangaben in Metern! – All distances in meters!

Entfernung zum Abrollen =Entfernung von der Schweile der entsprechenden RWY zum Schnellabrollweg Distance to turn-off = Distance from threshold of the respective RWY to turn-off Intersection


HIRO

- Published in AIP
- Use of RETs
- RET distance per aircraft categories

Example

CATEGORIA DE AERONAVE POR ESTELA TURBULENTA	RWY 24L DIST THR-RET	RWY DIST TI	24R HR-RET	RWY DIST TO	/ 06L HR-RET	RWY 06R DIST THR-RET	RWY 02 DIST THR-EXIT	
AIRCRAFT CATEGORY DUE TO WAKE TURBULENCE	DERECHA RIGHT	IZQUIERDA LEFT	DERECHA RIGHT	IZQUIERDA LEFT	DERECHA RIGHT	IZQUIERDA LEFT	IZQUIERDA LEFT	
SUPER		R6	P6 (1)					
PESADA HEAVY	G8 1703 m	2053 m	2112 m	P1 1864 m	R1 1661 m	G5 1703 m		
MEDIA (REACTORES) MEDIUM (JET)		R5 1703 m	P5 1617 m				UB 2039 m	
MEDIA (PROP) MEDIUM (PROP)	G7 1402 m	R3	P3	P2 1305 m	R2 1051 m	G6		
LIGERA LIGHT	G7 1402 m	1409	1275 m	P4 R4 945 m 751 m	1402 m			

Plan your exit and vacate as soon as possible

This will of course depend on the runway direction in-use, P5/R5 should be the preferred ones in westbound configurations for medium jets

What Can I do?

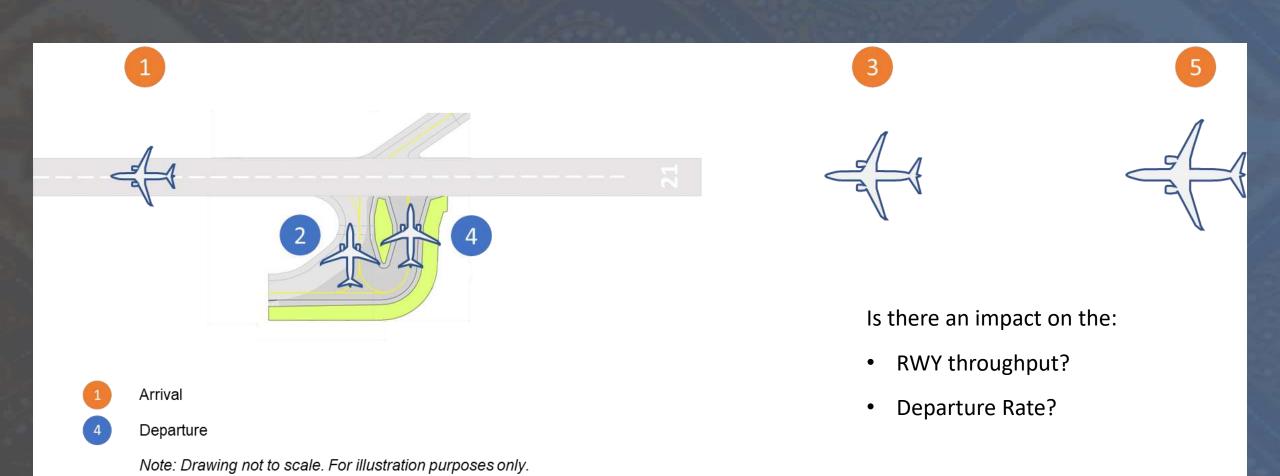
ON APPROACH (briefing)

- check **current** runway conditions
- check the airport briefing / AIP for suitable exit(s)
- plan the runway exit
- when possible, select optimum combination of flaps and auto-brakes settings

ON LANDING:

- VACATE AS SOON AS POSSIBLE and minimize runway occupancy time:
 - Use the first runway exit you can make, rather than one you may miss
 - Please do not use runway to taxi closer to your stand
- USE **PROGRESSIVE BREAKING TECHNIQUES** TO REACH PLANNED EXIT

Collaborative Management


Local Runway Safety Team / Runway Performance Committee

- Airport
- ATSP
- Local airport home-based carriers / operators
- Pilot association

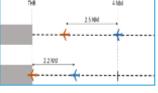
Runway Capacity – Enhancing Infrastructure

Airport Infrastructure - Dual RWY entry

RET Positioning

Runway Throughput Enhancement – ATC solutions

Runway Performance Package

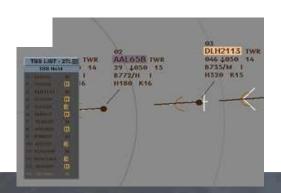

TBS and ORD tool

RECAT-EU /-PWS ROCAT /
Optimised ROT

Reduced MRS

Advanced Approaches support Optimised
Spacing on
Departure (OSD)

Procedural


	SUREN	HERRI	MONEY MERRY	LPFSP MARIEM	LOWER	Hatt
=	3.0	4.0	5.0	5.0	6.0	8.0
		3.0	4.0	4.0	5.0	7.0
120		MRS'	2/0	3.0	4.0	6.0
-						5.0
electric .						4,0

Leader	neavy	(low ROT)	(high ROT)	Light
Heavy	4 NM	5 NM	5 NM	6 NM
Medium (low ROT)	2.5 NM	2.5 NM	2.5 NM	5 NM
Medium (high ROT)	3 NM	3 NM	3 NM	5 NM
Light	3 NM	3 NM	3 NM	3 NM

	Heavy	A320	A319	B738	BCS3	E190	DH8D		Light
Heavy	4.0	5.0	5.0	5.0	5.0	5.0	5.0	111	6.0
A321	2.6	2.6	2.6	2.6	2.6	2.5	2.6	1.000	5.0
B738	2.7	2.7	2.7	2.7	2.7	2.7	2.7	77237	5.0
A319	2.5	2.5	2.5	2.5	2.5	2.5	2.5	1000	5.0
BC53	2.6	2.6	2.6	2.6	2.6	2.6	2.6	1775	5.0
GLF5	2,9	2.9	2.9	2.9	2.9	2.9	2.9	144	5.0
		300	9.00	+++	***	994		100	1000
Light	3.0	3:0	3.0	3.0	3;0	3.0	3.0	***	3.0

Light Automation

Proposals for improving capacity (NATS example)

- 1. Sharing information across the airport
- 2. Better use of what you have
- 3. Balancing demand
- 4. Getting your sequence right
- 5. Being consistently consistent

Thank you!

• airport.optimisation@eurocontrol.int www.eurocontrol.int