

Integration of Airport Collaborative Decision Making (A-CDM) into ATFM in Australia

OVERVIEW

Table of Contents

Purpose: An introductory pack providing an overview of the A-CDM Program in Australia.

- **1. A-CDM in Australia** program overview & benefits
- 2. Overview of A-CDM what it is & how it works
- **3.** What it means to you key changes for impacted stakeholders
- **4.** How we'll support you change activities for impacted stakeholders
- 5. Timing when we're implementing A-CDM in Australia
- 6. Where to go for more information

A-CDM in Australia

ATFM planning and integration of systems

Airport Collaborative Decision Making (A-CDM)

Airservices, airlines and airports working together to optimise airport operations & air traffic predictability.

- Airservices is working in partnership with our major airline and airport customers to implement Airport Collaborative Decision Making (A-CDM) into Australia's four major airports – Brisbane, Perth, Sydney, and Melbourne.
- A-CDM will be delivered through a staged rollout, one airport at a time, with all four airports expected to be operational by end 2025.
- A-CDM is implemented in over 50 airports globally. This is a world first multi-airport program designed to harmonise operations across our four major airports, reduce implementation costs, and elevate the benefits of A-CDM to a whole-of-network perspective.
- A-CDM in Australia is enabled through the A-CDM Aerobahn suite of tools provided by Saab Sensis.

Integrated A-CDM

Integrated A-CDM is a new way of working to improve airport operations through the sharing of data via a common platform to make informed decisions to efficiently manage the arrival, turnaround and departure phases of aircraft across ATFM ports managed by the ANSP.

A-CDM Information Sharing Platform (ACISP)

Capturing data at every stage of a flight's progress and sharing this information for all airport stakeholders to improve operational efficiency and predictability and facilitate better decision making.

Integrated A-CDM?

An integrated platform for A-CDM delivers significant benefits and outcomes for individual operators and the industry overall.

Situational Awareness

Common,
real-time
situational
awareness of
local / network
pain points

Operational Efficiency

Optimising the push-back sequence to reduce taxi-out times, improved ATFM compliance and network management

Asset & Resource
Utilisation

Better
utilisation and
unlocking of
latent airspace,
runway and gate
capacity

Customer Experience

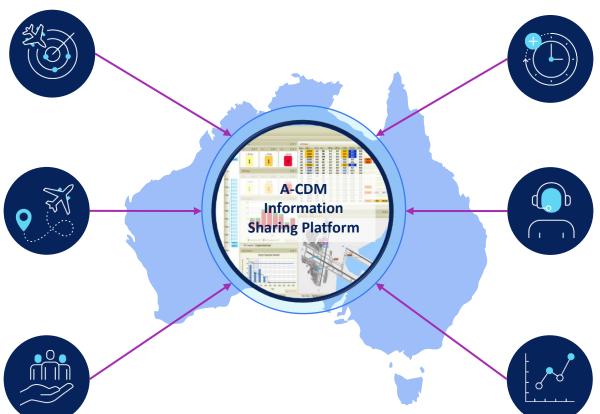
Improved on time performance, customer experience, predictability and recovery from adverse events

Cost Savings

Cost savings by reduced inefficiencies and improved operational predictability

Environmental Benefits

Lowered CO2
emissions
through
reduced taxi
time and fuel
burn


A-CDM Key Elements

A-CDM is underpinned an information sharing platform comprising six key elements*.

1. INFORMATION SHARING

A-CDM provides common situational awareness for all stakeholders (air traffic control, airlines, airports, ground handlers) – read more here.

4. VARIABLE TAXI TIME

A-CDM calculates the estimated time that an aircraft spends taxiing between parking bay/stand & runway thus providing predictable & accurate estimates of in blocks and take off times – read more here.

2. MILESTONE APPROACH

A-CDM captures flight progress data in real time according to 16 standardized milestones – read more here.

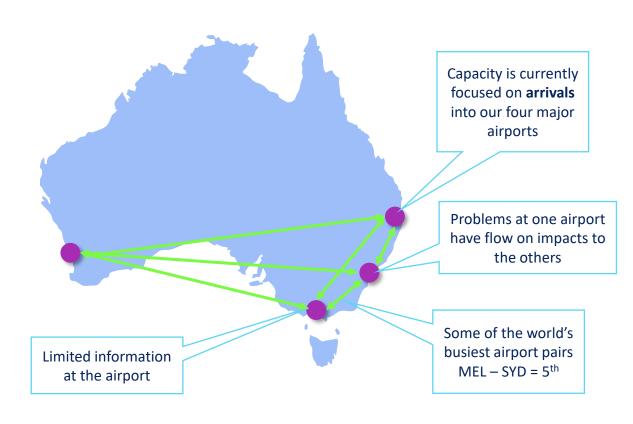
5. RECOVERY FROM ADVERSE EVENTS

Through information sharing and predeparture sequencing, A-CDM enables a more timely recovery from adverse conditions considering arrival & departure demand – read more here.

3. PRE-DEPARTURE SEQUENCING

A-CDM uses data within the system to establish an optimised pre-departure sequence to reduce taxi out delays, provide predictability and reduce congestion – read more here.

6. COLLAB. MGT OF FLIGHT UPDATES


A-CDM integrates of airport operation information into whole-of-network mgt, providing improved visibility of real-time arrival and departure demand throughout the network – read more here.

^{*}The Australian implementation is based on the Eurocontrol definition of A-CDM.

Network Benefits

A-CDM optimises and unlocks runway and gate capacity and enables situational awareness across the network.

OUR UNIQUE NETWORK ENVIRONMENT

A-CDM becomes a new control lever to optimise whole of network performance by:

- Providing real time information at each major airport
- Reducing taxi delays through optimised departure sequencing
- Enabling more sophisticated departure management capability improving enroute flow
- Improving ATFM compliance as the departure sequence takes into account CTOTs
- Improving recovery from adverse events reducing the flow on impact at the other airports
- Providing strategic awareness of what's happening and what's coming across the whole network through the NOMC

Assessing weather capacity for ATFM ports

The pre-tactical MET-CDM weather assessment is completed by 3 Meteorology teams in collaboration. They also perform any reviews/updates on the day of operations as a collaborative unit.

The MET assessment team comprise of:

- NOMC MET: Forecasters embedded in the Airservices National Operations
 Management Centre (NOMC) but provided by the Bureau of Meteorology. They
 specialise in the MET-CDM process and taking the ICAO standard weather TAF
 information and expanding the assessment to the whole of the Terminal Control Unit
 and breaking it down in detail against business rules.
- Q-MET: H24 meteorology team with QANTAS. Similarly qualified forecasters for MET-CDM with additional airline focused activities outside of the MET-CDM process
- V-MET: H12 (usually 21-09utc) meteorology team with Virgin Australia. Same as Q-MET

TAF YSSY 300451Z 3006/3112

18020G30KT 9999 -SHRA FEW018 BKN025

FM300900 19020G30KT 9999 -SHRA BKN014

FM301800 20025G35KT 9999 -SHRA BKN014

FM310000 20025G35KT 9999 -SHRA SCT020

FM310600 20020G30KT 9999 NSW SCT025

FM311000 20014KT 9999 SCT025

INTER 3006/3009 18025G35KT 4000 SHRA BKN012

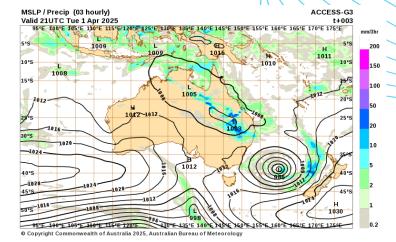
TEMPO 3009/3018 18030G40KT 3000 SHRA BKN008

INTER 3018/3102 20030G40KT 5000 SHRA BKN015

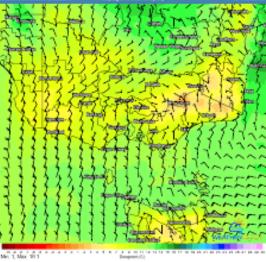
RMK FM300600 MOD TURB BLW 5000FT TL311000

T 23 21 21 20 Q 1007 1008 1009 1008

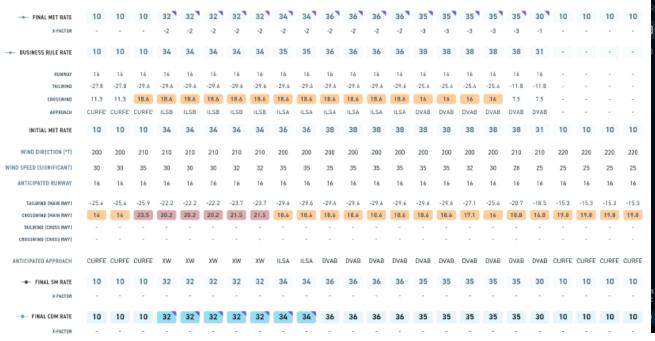
TAF3


Pre-tactical weather assessment

 The 3 teams use the TAF as the starting point for the assessment but then move to a wide variety of models for the assessment of the weather from dynamic models including:


ACCESS-G, ACCESS-C, ECMWF and US-GFS, UKMO, JMA to ensemble models including: 52 member of EC, 18 per-run for ACCESS-CE, 12 per-runs for ACCESS-GE

- Through a collaborative approach to network management Airservices (Networks and ATC), Meteorology units, and Airline operations units (Virgin, QANTAS, REX, Alliance etc.) have built business rules based on ability to process arrivals in defined weather conditions known as arrival rates.
- These Business Rules and weather models are integrated into our Digital Twin used to assess capacity and demand profiles for ATFM ports

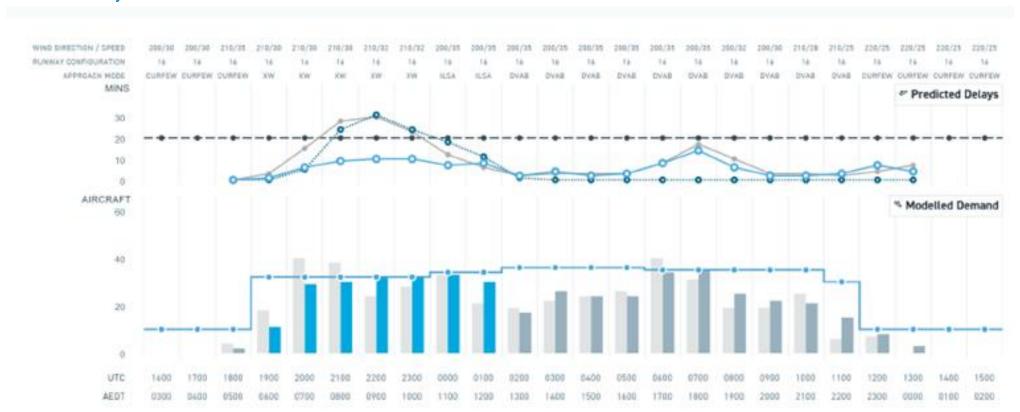


airservices australia

Capacity assessment

Following the meteorological assessment against weather models and business rules the ATFM team will run the Digital Twin Delay Management assessment.

This system takes an integrated approach to assessing network demand against capacity and assesses the whole of network not just the demand for an individual port.



airservices australia

Demand assessment

The Digital Twin runs approx. 3.4 million calculations per simulation to assess airborne delay based off the capacity and demand profiles, flight trajectories and known airline behaviours to create the final plan for the next day of operations.

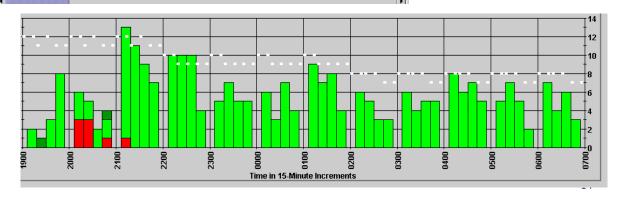
We can run multiple simulations to assess different capacity scenarios and allows us to assess "Plan B" scenarios for when weather events may arrive earlier or later than expected and then how that will impact airborne delays

Ingestion into Harmony

Once the assessment for demand and capacity is complete and the ATFM plan for the day of operations is agreed the NOMC transfer the plan from Digital Twin into the Metron Harmony system.

Metron Harmony is used by airlines and the NOMC for the assignment and manipulation of COBT's for the next day of operations.

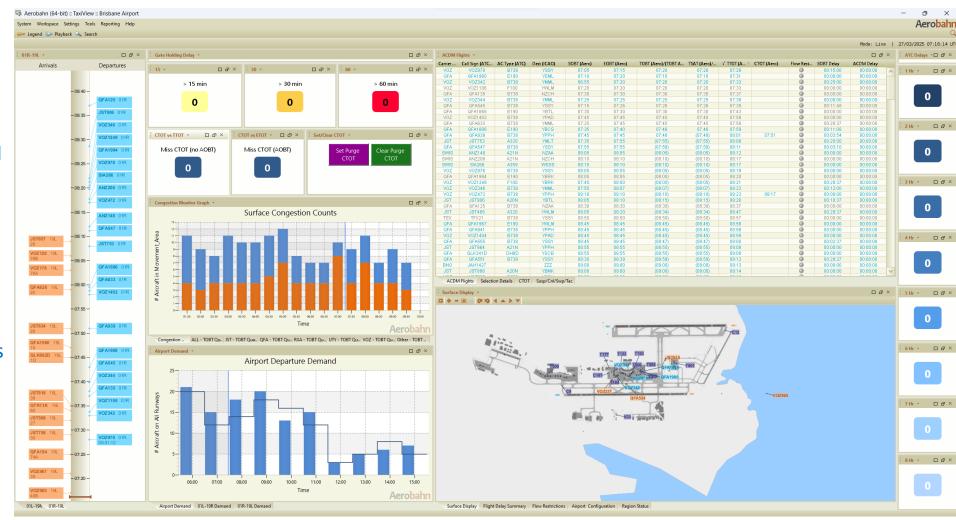
Operators will follow set business rules for compliance with IATA and/or GDP slot assignment and can either interact with the system manually or through their own automated systems.


At a set time over night the plan from Harmony is transferred into the A-CDM system for day of operations activation of the plan.

COBT's are transitioned through set algorithms into TSAT's and TOBT's

OFFICIAL

		YSS	SY 20	25/04/11	08:50	Arrival: ETA	
Status	Arr/Dep Status	Base AC Group	Carrier	Afix Dfix	ARwy DRwy	Groups	Control Type
11/070	0 11/0800	11/0900	11/1000	11/110	0 11/1200	11/13	00 11/140
46/42	46/33	46/27	46/19	46/21	46/15	46/1	46/0
0	00	00 👊	00	00	00 €	00	00
	- ++	-	- ,	- ,		-	-
#	1	- 1	- 4440		- 444		
4	- 44	- 44		-	- \leftrightarrow	-	-
S	05	05	05	05	os	08	05
*	Δ	- \leftrightarrow		- 🖪	- 44	-	-
	- 44	- <u>A</u>	- 44	_	-	-	
	- A	- ~	-	- 🛶	-	-	-
0 🔲	10 🙌 🙌	10	10	10	10	10	10
+-4	- ,	-	-	- 🖛	- \leftrightarrow	-	-
Α	. *	- 44	- - 444	- - 41444	- - 44		1
44			- 44-44	- M-4-4	- 4∆	-	-
s ` •	15 🐗	15 👊	15	15	15	15	15
44	- +		- 🗰	-	-	-	-
4.	- 4. 4.	- A	-	-	-	- da	-
Σ		- 1	-		1	- 90	
o~	20	20	20	20	20 📫	20	20
++	-	-			-	-	-
			- 44¢	- 🗢	- 4		
Δ	1	- 4	- A			-	
s 4 4	25	25	25 🙀	25	25	25	25
*	- 4	- ,	-	- ,	-	-	-
++		- ₹∆	- 40	- 22	-	-	-
	-	- ~~	- 🙀	- 44	- 🖛	-	-
10 44 4 🗆	30 🙀	30	30	30	30	30	30
	- 4	- • - •\Δ	-	- I			
#4		- ₹Δ	-	1	1		
	-	- ++	-	-	- 💠	-	-
is <u>∧</u>	35 🐗	3S 41	35 -∰ 1	95	95	95	35
++		- 4	- 4			_	_
*	-	- 🧃	- ~	-	-	-	-
+	- 💠	-	-	-	-	-	-
۰	40 €	40 👊	40	40	40	40	40
- 2	- 4	-	_	- ~	-	-	_
. `	- ∔	-	- 🖛	- 🖛	-	-	-
-Δ	+	-		- 44	-		
s ←	45 - 4	45 🚓 🚓	45	45	45 -	45 -	4S -
4	- 4	- 44 - 44 - 80	-	-	-	-	-
· 🐳	- 1	- d à	-	-	-	-	-
• 4 △ :0 4	- 🛶 50 👊	_ S0	50	- S0	- 50	- 50	- S0
- T	- A	-	-	-	-	-	-
+	- 🐳	- 🔟	- 👊	- 🔟	-	-	-
*	- 4.		-	- \leftrightarrow	-	-	-
. 5	- 🐳 55 📫	- 👊 SS	55	- 55	- 55	- 55	55
*	- 4	-	-		-	-	-
	- 🐳	- 🗆 - 🙌	- 🛶		-	-	-
++	- 4	- 4	- 4	- 🗢	-		-
	- 🔫	_	- 😝	_	-	-	-



Ingestion into A-CDM

- Operators have individual accounts with customised dashboards to enable tracking of times and milestone progress of the flight.
- A-CDM displays arrival and departure sequences, demand and capacity, compliance and surface movement and is configurable for different types of users.
- If needed operators use the system to adjust flights to available slots if they cannot use the original time. The available slot accounts for departure and gate demand at the departure port as well as gate availability if they are flying to another A-CDM port.

A-CDM introduces new concepts to Australian operators to enable better awareness of readiness and to optimise departures and gate management.

TOBT = Target Off Block Time

- The time a plane is ready to depart, doors closed and ready for ATC clearance.
- Indicates aircraft's readiness for departure and is used to calculate the Target Start Up Approval Time (TSAT).

TSAT = Target Start Up Approval Time

- The time a flight crew expects to receive start-up/pushback clearance by ATC.
- Calculated by the Pre-Departure Sequencer based on the optimum departure sequence for ALL departing aircraft.
- ATC will give pushback / startup clearance once flights are within the TSAT window.

Aircraft operators (or ground handlers) must keep TOBTs updated within -5/+5 window.

Adhering to TOBT and TSAT enables change from "FIRST COME, FIRST SERVED" to "BEST PLANNED, BEST SERVED"

ATFM Compliance Monitoring

The new A-CDM rules and how we monitor compliance

TOBT

- All IFR fixed wing (excl. exempt) flights responsible for complying with their Target Off Block Time (TOBT)
- Aircraft operators (or ground handlers) responsible for updating TOBT if not achievable within -5/+5 mins window
- Flight crews responsible for calling for ATC clearance within TOBT window (-5/+5 mins)
 - If early (before their TOBT window) ATC will advise to standby for ground
 - If late (after their TOBT window), ATC will advise to contact company for a new TOBT

TSAT

• ATC is responsible for issuing start up / pushback approval -5/+5 mins of TSAT

СТОТ

- GDP compliance for flights departing from A-CDM airports shifts from COBT to CTOT
- CTOTs are included in the calculation of the TSAT in the pre-departure sequencer
- Flights cannot leave early non-compliant as adherence to TSAT prevents this
- Although flights won't be prevented leaving late non-compliant, onus is on aircraft operator to manage compliance

Thank you

If you have questions, please contact me via:

<u>Simon.Godsmark@AirservicesAustralia.com</u>