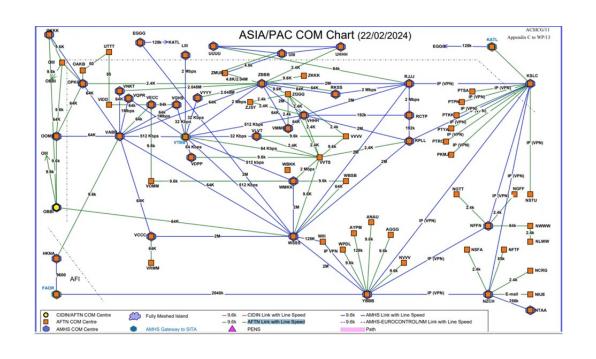
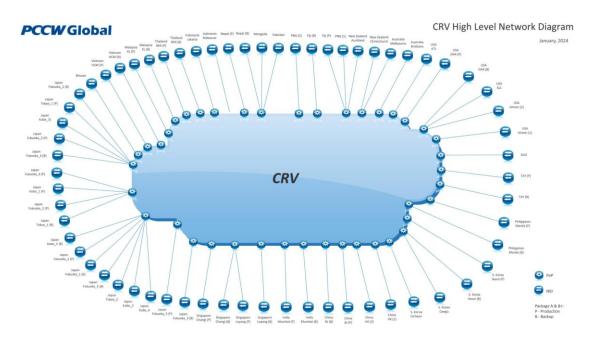


Implementable Approach for SWIM Message Exchange over CRV

Xiaodong Lu

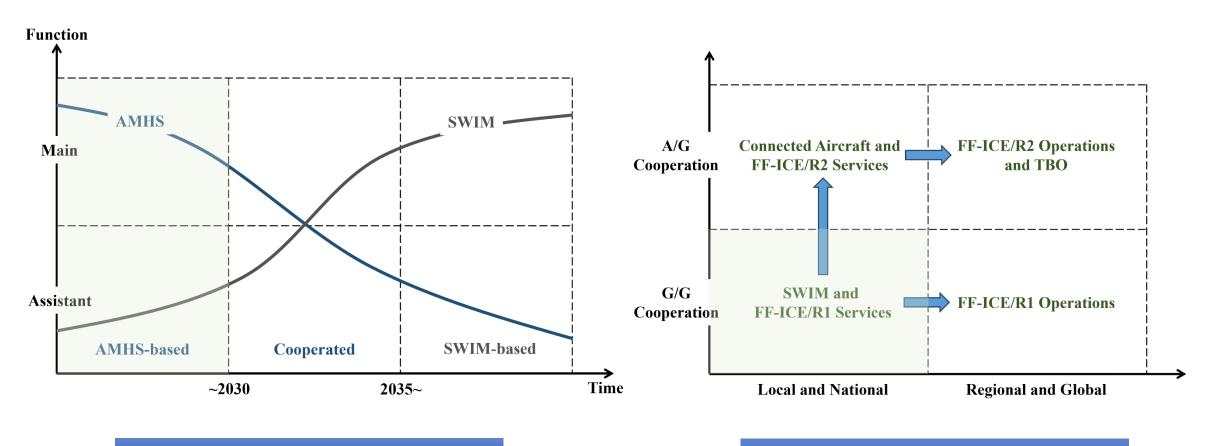
Surveillance and Communications Department
Electronic Navigation Research Institute, Japan
January 14~17, 2025




- 2. Implementable Approach
- 3. Technical Problems
- 4. Summary

Current Status

> Current Structures

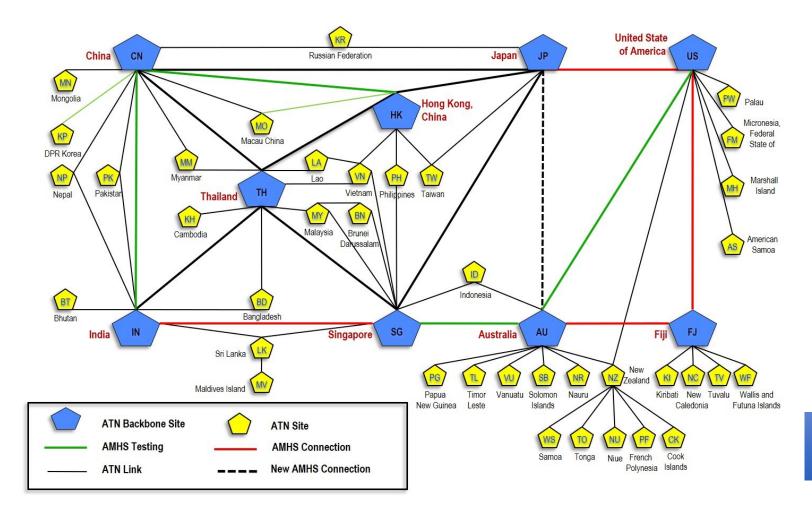

- Static IP address
- Static connections
- Static bandwidth

- Static IP address
- Changeable connections
- Changeable bandwidth

Current Status

> Where we are, Where we need to go, How we can get there

From AMHS to SWIM


From Local to Global

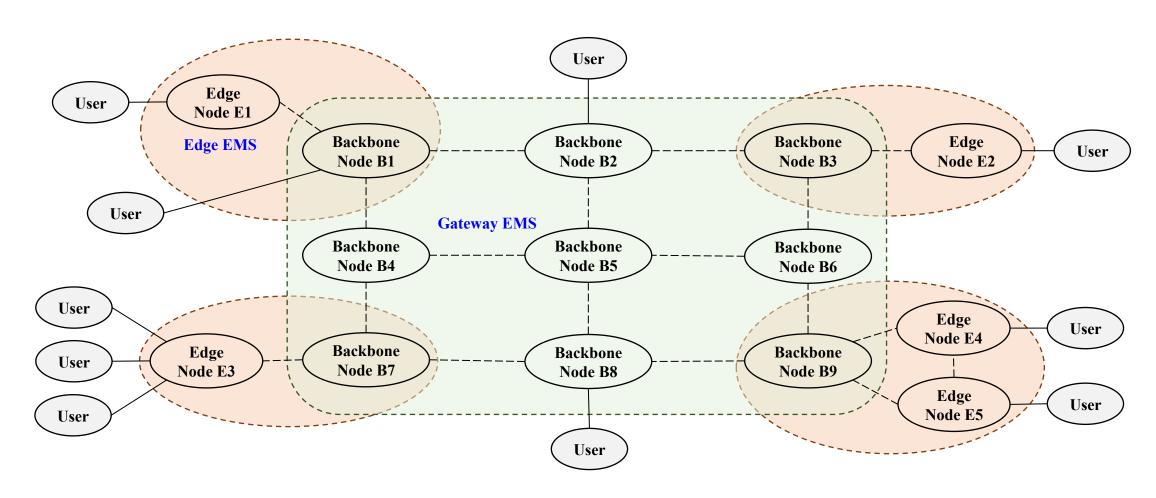
- 1. Current Status
- 2. Implementable Approach
- 3. Technical Problems
- 4. Summary

Implementable Approach

> AMHS-based Operations with SWIM

Requirements:

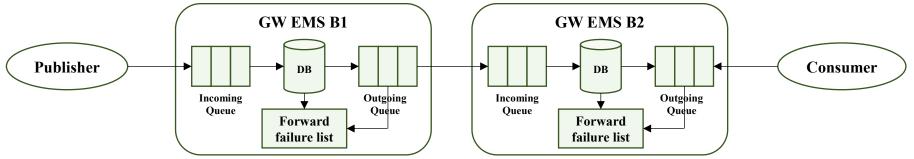
- No impact on current AMHS based message exchange
- Easy to implement SWIM based information sharing
- Low cost to maintain and manage both systems



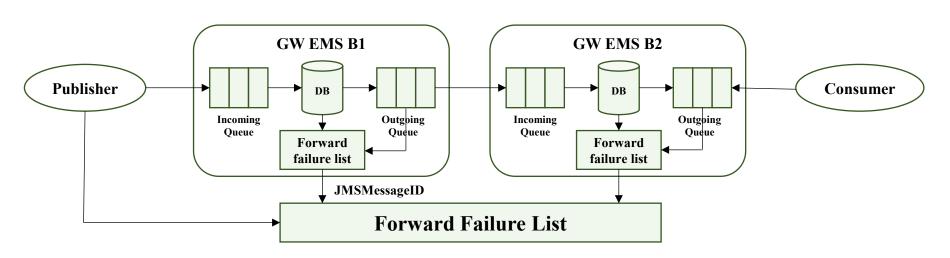
Same Structure with various Interface Bindings

Implementable Approach

+


> Backbone Nodes serve as Gateway EMS

- 1. Current Status
- 2. Implementable Approach
- 3. Technical Problems
- 4. Summary



Problem		Use case	Solution
1. Priority messaging depending on the the information		Surveillance messages caused queue overflow and loss of FF-ICE messages.	 Deliver surveillance messages using a separate queue and logical network Set a message TTL for surveillance messages
2. Guaranteed messa destroyed when m of a message brok message delivery	nalfunctioning er occurs in the	When the message broker reaches the maximum number of messages, it drops subsequent messages.	 Set up a staging DB between incoming queue and outgoing queue Peek & Lock, Receive & delete
3. Compensation transactions cannot be performed to compensate transaction failure in the message delivery chain		The publisher is not aware of failures that occurred in the EMS afterwards.	 Implement retry logic for failed message deliveries Record Forward Failure List for traceability

Problem		Use case	Solution	
4	. Detouring cannot be performed if a failure occurs in the message delivery chain	The publisher is not able to change delivery responsibility even if the publisher recognizes a failure in the message delivery chain.	 Set a backup EMS for each publisher and Edge EMS Each Gateway EMS has at least two connections to other Gateway EMS 	
5	. The edge node does not know which message to resend when message loss occurs	In the case of a missing message that occurs in a subsequent EMS, the publisher cannot specify the message and try to resend it.	 Publish the Forward Failure List, making it accessible to publishers Subscriber responds "Submission Response" to the publisher 	

Discussions

Vulnerabilities		Troubleshooting
Priority messaging is not	OSI	Queueing algorithms in the OSI 3 rd layer typically
possible depending on the	3 rd Layer	prioritize packets based on various factors, including
importance of the	(Network)	Quality of Service (QoS) requirements, packet type,
information		and destination. Queueing plays a crucial role in
		managing packet traffic, minimizing delays, and
		maintaining the quality of service.
	OSI	Message brokers (e.g., RabbitMQ) support message
	7 th Layer	<u>prioritization</u> through the use of message priorities.
	(Application)	Prioritized messaging allows to ensure that messages
		with higher priorities are consumed before messages
		with lower priorities.
Guaranteed message	OSI	<u>Leaky bucket algorithm</u> serves as a method to control
delivery is destroyed	3 rd Layer	the rate of data flow into the buffer, thereby managing
when malfunctioning of a	(Network)	congestion and ensuring a consistent data transfer rate.
message broker occurs in	OSI	JMS Server with staging DB is one of the de-facto
the message delivery	7 th Layer	architectural patterns for reliable messaging. Incoming
chain	(Application)	queue is only to receive message from publisher and
		out coming queue is only to send message to
		consumer. There is staging DB between incoming
		queue and outgoing queue, so it acts like an buffer. Message Broker
		Publish Staging DB Consume
		Incoming Outgoing
		Queue Queue
		<u> </u>
		Table 0 (Collect) Table 0 (Distribute)
		Row-0 Row-0

Discussions

Vulnerabilities		Troubleshooting	
Compensation transactions cannot be performed to compensate transaction failure in the message delivery chain	OSI 7 th Layer (Application)	Saga pattern is a design pattern used in distributed systems to maintain data consistency across multiple microservices or transactions. It's particularly relevant in the context of Event-Driven Messaging (EDM) architectures, where services communicate asynchronously through events. This consistency is achieved by executing conservative transactions for failover such as pivot, compensable, retriable transaction.	
Detouring cannot be performed if a failure occurs in the message delivery chain	OSI 3 rd Layer (Network)	OSPF (Open Shortest Path First) is a dynamic routing protocol commonly used in large-scale enterprise and service provider networks. OSPF provides several mechanisms for creating detour routes within a network to optimize traffic flow, enhance network resilience, and mitigate congestion or failures.	
The edge node does not know which message to resend when message loss occurs	OSI 3 rd Layer (Network)	Automatic Repeat reQuest (ARQ) is a communication protocol technique used to ensure the reliable delivery of data packets over unreliable communication channels. One of the primary functions of ARQ is to detect and resend lost or corrupted packets	
	OSI 7 th Layer (Application)	In the FF-ICE, the message type "SUB_RESP" is generated by recipients enlisted in the FF-ICE message to notify if the message is received to message originator	

+

- 1. Current Status
- 2. Implementable Approach
- 3. Technical Problems
- 4. Summary

Summary

> New Considerations

Operation Concept

- TBO (Trajectory Based Operations)
- 4-Dimentional Trajectory
- FF-ICE (Flight and Flow Information for Collaborative Environment)

Information Infrastructure

- SWIM (System Wide Information Management)
- Messaging Infrastructure
- Information Exchange Models
- Information Services

Communication Infrastructure

- IP based Connectivity
- Ground-to-Ground Communication Network
- Air-to-Ground Data Link

ICAO ATM Requirements and Performance Panel (ATMRPP): Operation Approach

ICAO Trust Framework Panel (TFP): Information Security

ICAO Information Management Panel (IMP), APAC SWIM Task Force: SWIM Implementation

ICAO Cybersecurity Panel (CYSECP): Comms. Security

ICAO Communication Panel (CP): IP-based Communication Network

