

## International Civil Aviation Organization

# The Ninth Meeting of System Wide Information Management Task Force (SWIM TF/9)

Bangkok, Thailand, 14 – 17 May 2024

Agenda Item 5:

Updates on the assigned tasks by task leads/contributors, including progress report and issues

## Consideration on Guaranteed Message Delivery for Regional SWIM Architecture

(Presented by SIPG, presenter ROK)

#### **SUMMARY**

This paper presents a consideration on guaranteed-message delivery in regional SWIM architecture (i.e., a hierarchical architecture). This paper is to introduce vulnerabilities which possibly break guaranteed message delivery in a hierarchical SWIM architecture in the APAC region, and considerations to ensure reliable and guaranteed message delivery.

#### 1. INTRODUCTION

- 1.1 At the 8<sup>th</sup> SWIM TF meeting in 2023, a hierarchical architecture was proposed to avoid the issue of having a single point of failure present in the centralized approach while at the same time avoiding the case of a very complex topology in the decentralized approach. <u>Proposal for detailed Enterprise Messaging Service architecture and its</u> impact on the use of message headers Japan, Singapore, and Thailand (WP/05)
- 1.2 SWIM Implementation Pioneering Group (SIPG) was requested to undertake the task of defining the message header format and contents. And, a hierarchical architecture is implemented to support SWIM over CRV demonstration and surveillance data over SWIM trial to be held in May 2024.
- 1.3 The hierarchical architecture is an implementation of the edge or fog computing, and through it, this could enable efficient usage of bandwidth on a CRV network and prevent the propagation of failures. However, potential architectural vulnerabilities have been identified (e.g., guaranteed message delivery failure due to the improper failover or message handling during partitioning phase) during the implementation of the hierarchical architecture. These vulnerabilities could impair reliable messaging, (i.e., provides support for various types of guarantees for message delivery) a core capability defined in the SWIM ConOps (Doc. 10039).
- Guaranteed message delivery is a capability commonly provided by Commercial, off-the-shelf (COTs) or Open Source (OS) message broker (e.g., both Solace Pub/Sub platform and RabbitMQ provide federation capability between homogeneous message brokers), but in a hierarchical architecture in the APAC region, this is not applicable as it does not force to the use of a specific message broker. In the practical implementation of the architecture, heterogeneous message brokers are adopted by states in SIPG.

1.5 This paper describes architectural vulnerabilities identified during the implementation of the hierarchical architecture in terms of guaranteed message delivery, and benchmarks other implementations of guaranteed data or message delivery in Open Systems Interconnection Reference Model (OSI) 7 layers and elicits considerations in aspect of technical and business solution.

# 2. DISCUSSION

2.1 Substantial architectural vulnerabilities identified during the implementation of the hierarchical architecture in terms of guaranteed message delivery are as follows:

| Vulnerabilities                                                                   | Use-Case / Rationale / Impact                                                                                                                                                                                       |                                                       |             |          |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|----------|--|
| Priority messaging is not possible depending on the importance of the information | When congestion occurs in the network or messaging level, message delivery cannot be prioritized                                                                                                                    |                                                       |             |          |  |
| mormation                                                                         | Publisher                                                                                                                                                                                                           |                                                       |             | Consumer |  |
|                                                                                   |                                                                                                                                                                                                                     | FIFO                                                  |             |          |  |
|                                                                                   |                                                                                                                                                                                                                     |                                                       |             |          |  |
|                                                                                   | EnQueue                                                                                                                                                                                                             |                                                       |             | DeQueue  |  |
|                                                                                   | In a single queue, messages are delivered in a FIFO manner regardless of the importance of the message                                                                                                              |                                                       |             |          |  |
|                                                                                   | Assuming that the the surveillance n message are deliv congestion occurs this could cause a                                                                                                                         | d surveillance<br>e queue, when<br>essed equally, and |             |          |  |
| Guaranteed message delivery is destroyed when                                     | When the message queue is full or shutdown, the message is dropped                                                                                                                                                  |                                                       |             |          |  |
| malfunctioning of a<br>message broker occurs in<br>the message delivery chain     | Publisher                                                                                                                                                                                                           | GW EMS<br>A                                           | GW EMS<br>B | Consumer |  |
|                                                                                   |                                                                                                                                                                                                                     |                                                       | <b>———</b>  |          |  |
|                                                                                   | EnQueue                                                                                                                                                                                                             | Not Full                                              | Full        | DeQueue  |  |
|                                                                                   | Drop                                                                                                                                                                                                                |                                                       |             |          |  |
|                                                                                   | When the message broker reaches the maximum number of messages, it drops subsequent messages or deletes messages using the FIFO method                                                                              |                                                       |             |          |  |
|                                                                                   | Assuming an environment where network delay occurs, if the publisher publishes the message at 100msg/s and the consumer consumes the message at 50msg/s, the message queue becomes full and message omission occurs |                                                       |             |          |  |

| Vulnerabilities                                             | Use-Case / Rationale                                                                                                                                    |  |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Compensation transactions                                   | Ensuring integrity of respective messages are not achievable without                                                                                    |  |  |  |  |
| cannot be performed to                                      | a compensation transaction                                                                                                                              |  |  |  |  |
| compensate transaction<br>failure in the message            | Publisher GW EMS GW EMS Consumer                                                                                                                        |  |  |  |  |
| delivery chain                                              | Failure                                                                                                                                                 |  |  |  |  |
|                                                             | Compensation Notify Notify                                                                                                                              |  |  |  |  |
|                                                             | Transaction                                                                                                                                             |  |  |  |  |
|                                                             | Callback                                                                                                                                                |  |  |  |  |
|                                                             | The publisher can know a failure from the message broker that                                                                                           |  |  |  |  |
|                                                             | directly published the message (e.g., Edge to GW), but is not aware                                                                                     |  |  |  |  |
|                                                             | of failures that occurred in the message broker afterwards (e.g., GW to GW, GW to Edge) if there is no notification or trigger.                         |  |  |  |  |
| Detouring cannot be                                         | The publisher is not able to change delivery responsibility even if the                                                                                 |  |  |  |  |
| performed if a failure occurs in the message                | publisher recognizes a failure in the message delivery chain.                                                                                           |  |  |  |  |
| delivery chain                                              | Publisher GW EMS GW EMS Consumer                                                                                                                        |  |  |  |  |
|                                                             | A   B   C                                                                                                                                               |  |  |  |  |
|                                                             | Failure                                                                                                                                                 |  |  |  |  |
|                                                             | Detouring during the partitioning phase is non-configurable                                                                                             |  |  |  |  |
|                                                             | All edges are accessible to other edges in the CRV level, but direct access is restricted architecturally, and edges is not able to use a detour route. |  |  |  |  |
| The edge node does not                                      | The publisher does not know which message to resend                                                                                                     |  |  |  |  |
| know which message to<br>resend when message loss<br>occurs | Publisher GW EMS GW EMS Consumer  A B                                                                                                                   |  |  |  |  |
|                                                             |                                                                                                                                                         |  |  |  |  |
|                                                             | Recognizable Lost                                                                                                                                       |  |  |  |  |
|                                                             | Non-Recognizable ————————— Lost                                                                                                                         |  |  |  |  |
|                                                             | In the case of a retransmitting to message broker directly connected,                                                                                   |  |  |  |  |
|                                                             | the publisher can specify the missing message and retransmit it, but in the case of a missing message that occurs in a subsequent message               |  |  |  |  |
|                                                             |                                                                                                                                                         |  |  |  |  |
|                                                             | broker, the publisher cannot specify the message and try to resend it.                                                                                  |  |  |  |  |

2.2 The vulnerabilities addressed in Section 2.1 are commonly encountered problems in other domains (e.g., network level, or messaging in the finance domain), and many different troubleshooting methods are designed as follows:

| Vulnerabilities                                                                                                                      |                                                                             | Troubleshooting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Priority messaging is not possible depending on the importance of the information                                                    | OSI<br>3 <sup>rd</sup> Layer<br>(Network)                                   | Queueing algorithms in the OSI 3 <sup>rd</sup> layer typically prioritize packets based on various factors, including Quality of Service (QoS) requirements, packet type, and destination. Queueing plays a crucial role in managing packet traffic, minimizing delays, and maintaining the quality of service.                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                      | OSI<br>7 <sup>th</sup> Layer<br>(Application)                               | Message brokers (e.g., RabbitMQ) support message prioritization through the use of message priorities.  Prioritized messaging allows to ensure that messages with higher priorities are consumed before messages with lower priorities.                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Guaranteed message<br>delivery is destroyed<br>when malfunctioning of a<br>message broker occurs in<br>the message delivery<br>chain | OSI 3 <sup>rd</sup> Layer (Network) OSI 7 <sup>th</sup> Layer (Application) | Leaky bucket algorithm serves as a method to control the rate of data flow into the buffer, thereby managing congestion and ensuring a consistent data transfer rate.  JMS Server with staging DB is one of the de-facto architectural patterns for reliable messaging. Incoming queue is only to receive message from publisher and out coming queue is only to send message to consumer. There is staging DB between incoming queue and outgoing queue, so it acts like an buffer.  Message Broker  Publish  Staging DB  Outgoing Queue  Outgoing Queue  Table 0 (Collect)  Table 0 (Distribute)  Row-0  Row-0 |  |  |
| Compensation<br>transactions cannot be<br>performed to compensate<br>transaction failure in the<br>message delivery chain            | OSI<br>7 <sup>th</sup> Layer<br>(Application)                               | Saga pattern is a design pattern used in distributed systems to maintain data consistency across multiple microservices or transactions. It's particularly relevant in the context of Event-Driven Messaging (EDM) architectures, where services communicate asynchronously through events. This consistency is achieved by executing conservative transactions for failover such as pivot, compensable, retriable transaction.                                                                                                                                                                                  |  |  |
| Detouring cannot be performed if a failure occurs in the message delivery chain                                                      | OSI<br>3 <sup>rd</sup> Layer<br>(Network)                                   | OSPF (Open Shortest Path First) is a dynamic routing protocol commonly used in large-scale enterprise and service provider networks. OSPF provides several mechanisms for creating detour routes within a network to optimize traffic flow, enhance network resilience, and mitigate congestion or failures.                                                                                                                                                                                                                                                                                                     |  |  |

| Vulnerabilities        | Use-Case / Rationale  |                                                         |
|------------------------|-----------------------|---------------------------------------------------------|
| The edge node does not | OSI                   | Automatic Repeat reQuest (ARQ) is a communication       |
| know which message to  | 3 <sup>rd</sup> Layer | protocol technique used to ensure the reliable delivery |
| resend when message    | (Network)             | of data packets over unreliable communication           |
| loss occurs            |                       | channels. One of the primary functions of ARQ is to     |
|                        |                       | detect and resend lost or corrupted packets             |
|                        | OSI                   | In the FF-ICE, the message type "SUB_RESP" is           |
|                        | 7 <sup>th</sup> Layer | generated by recipients enlisted in the FF-ICE message  |
|                        | (Application)         | to notify if the message is received to message         |
|                        |                       | originator                                              |

#### Conclusion

- 2.3 In conclusion, the implementation of a hierarchical architecture in the APAC SWIM presents promising opportunities for enhancing efficiency and reliability in message delivery. However, as highlighted in this paper, the adoption of a hierarchical architecture with heterogeneous message brokers could introduce certain vulnerabilities, especially concerning guaranteed message delivery.
- 2.4 Given the critical nature of SWIM operations and the need for reliable messaging, it becomes imperative to address these vulnerabilities effectively to ensure guaranteed message delivery within the hierarchical architecture. To do this, several considerations must be taken into account:
  - 2.4.1 Standardize common logic or process for message handling;
  - 2.4.2 Design failover mechanisms and redundancy both in technical and business aspect;
  - 2.4.3 Design common monitoring and notification mechanism;
  - 2.4.4 Identify abnormal use-case and conduct testing and validation; and
  - 2.4.5 Conduct collaborative efforts and knowledge sharing;

## 3. ACTION BY THE MEETING

- 3.1 The meeting is invited to:
  - a) note the information contained in this paper;
  - b) deliberate on the proposed considerations; and
  - c) discuss any relevant matter as appropriate

\_\_\_\_\_\_