PBN For Enroute

PBN Concept

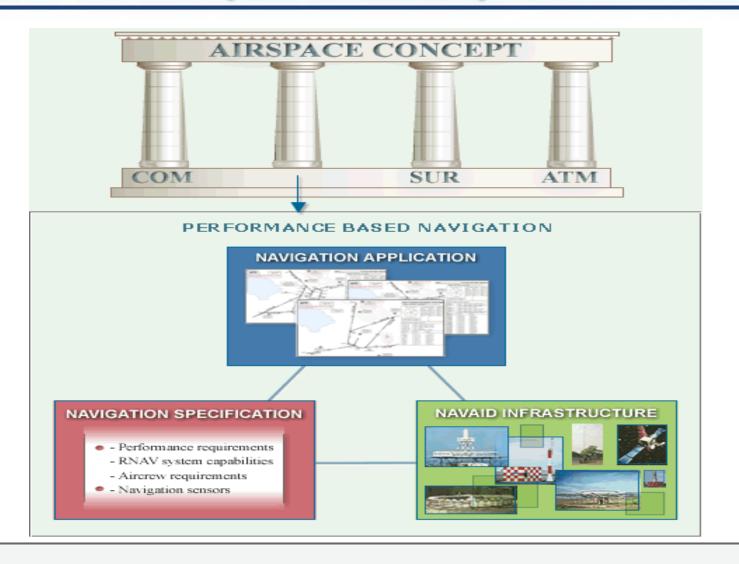
Asia and Pacific Regional Sub-Office

What is PBN?

- PBN stands for "Performance Based Navigation".
 - Comprised of RNAV and RNP
 - RNAV (Area Navigation) is a method of navigation which permits aircraft operation on any desired flight path:
 - Within the coverage of station-referenced NAVAIDs, or
 - Within the limits of the capability of self-contained system, or
 - A combination of these capabilities
 - RNP is a RNAV System with On-board Performance Monitoring and Alerting(OPMA)
 - Area navigation is the key enabler for the Performance Based navigation (PBN)

What is PBN?

- ❖ PBN specifies SYSTEM PERFORMANCE REQUIREMENTS for aircraft operating on air traffic routes, instrument approach procedures, or in a designated airspace.
- **The performance requirements for PBN are defined:**
 - Accuracy: Defined as difference between the actual and estimated position and should be 95% performance per flight hour along the intended operation.
 - Integrity: The degree of confidence that can be placed on the RNAV system's position estimations or the probability of an undetected failure per flight hour.
 - Continuity: The ability of the navigation system to provide its service without interruption during an operation or the probability of a system failure during the intended operation.
 - Availability: the ability to perform its function at the initiation of the intended operation.


Why PBN in Enroute?

- The Assembly Resolution A37-11 PBN Global Goals
 - Urges all States to implement RNAV and RNP ATS routes and approach procedures in accordance with the ICAO PBN concept
- Beijing Declaration
 - to implement PBN by 2022
- **❖** ASBU/Seamless ANS Plan
 - > FRTO-B1/2 Required Navigation Performance (RNP) routes
 - > RNP routes should be deployed within en-route airspace where Free Route Airspace (FRA) is not planned or if FRA is deployed the RNP routes should ensure the connectivity between FRA and TMAs.
- Improving Safety
 - Reduces airspace conflicts between adjacent airports and prohibited or special use airspace
- Increasing Airspace Capacity
 - Increases airspace traffic capacity through shorter & more efficient routes and smoother flows

PBN as the 'N' Element of Airspace Concept

NAVIGATION APPLICATION

NAVIGATION SPECIFICATION

NAVAID INFRASTRUCTURE

- **➢** Ground-based Navigation Aids (NAVAIDs)
 - VOR, DME, (Not NDB)
- > Space-based NAVAIDs
 - GNSS
 - GPS, GLONASS, Galileo, BEIDU (COMPASS)
- **➤** (Self contained NAVAIDs)
 - INS/IRS, FMS

Satellite constellations

Several types of errors :

- Satellite clock & ephemerid
- Ionosphere
- Troposphere

And lack of integrity

Global Navigation Satellite System (GNSS)

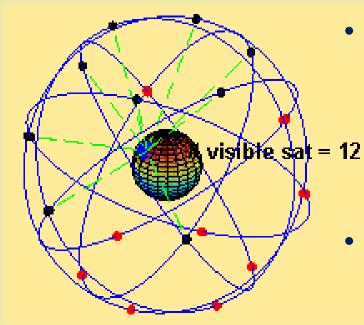
Three types of augmentations

Aircraft Based Augmentation System

Ground Based Augmentation System

Galileo

Satellite Based Augmentation System



GNSS - GPS

A 24 satellite constellation

Position computed in WGS84

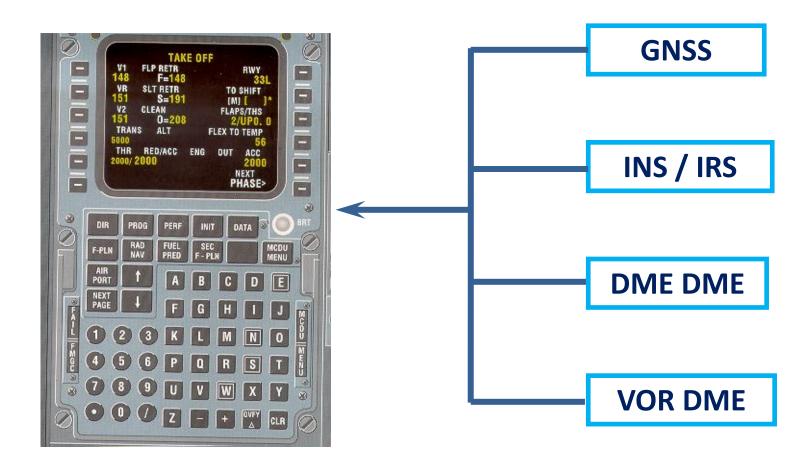
Accuracy of 10 meters or better

Worldwide coverage

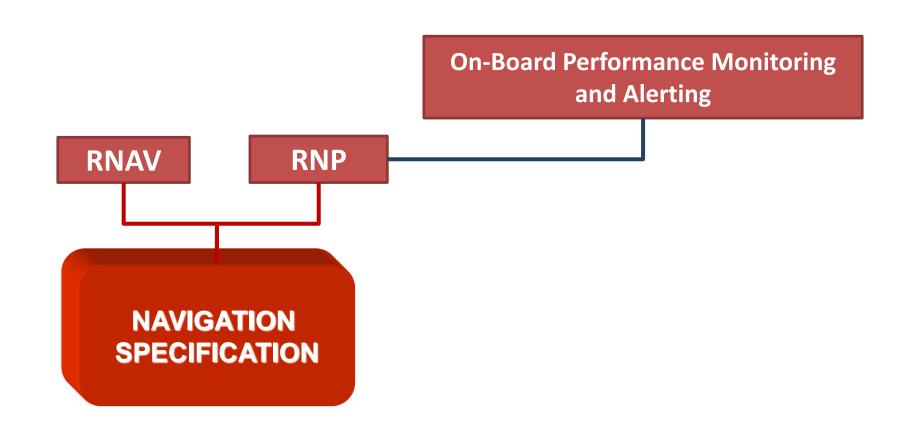
Database navigation

❖ Signal-in-space performance requirements (Annex 10)

Table 3.7.2.4-1 Signal-in-space performance requirements


Typical operation	Accuracy horizontal 95% (Notes 1 and 3)	Accuracy vertical 95% (Notes 1 and 3)	Integrity (Note 2)	Time-to-alert (Note 3)	Continuity (Note 4)	Availability (Note 5)
En-route	3.7 km (2.0 NM)	N/A	$1 - 1 \times 10^{-7}/h$	5 min	$\begin{array}{c} 1-1\times 10^{-4}/h\\ \text{to } 1-1\times 10^{-8}/h \end{array}$	0.99 to 0.99999
En-route, Terminal	0.74 km (0.4 NM)	N/A	$1 - 1 \times 10^{-7}/h$	15 s	$\begin{array}{c} 1-1\times 10^{-4}/h\\ \text{to } 1-1\times 10^{-8}/h \end{array}$	0.99 to 0.99999

- Augmentation System
 - > Satellite Based Augmentation System(SBAS) covers a large area of a continent
 - WAAS USA
 - EGNOS Europe
 - GAGAN India
 - MSAS Japan
 - SDCM Russia
 - KASS Republic of Korea (by 2023)
 - BDSBAS China (by 2025)
 - SouthPAN- Australia-New Zealand(2028)
 - Aircraft Based Augmentation System (ABAS)
 - RAIM (Receiver Autonomous Integrity Monitoring) compares a series of position estimations within the GPS unit using redundant (extra) satellite signals.
 - AAIM (Aircraft Autonomous Integrity Monitoring)- links the GPS receiver to other aircraft systems such as IRS

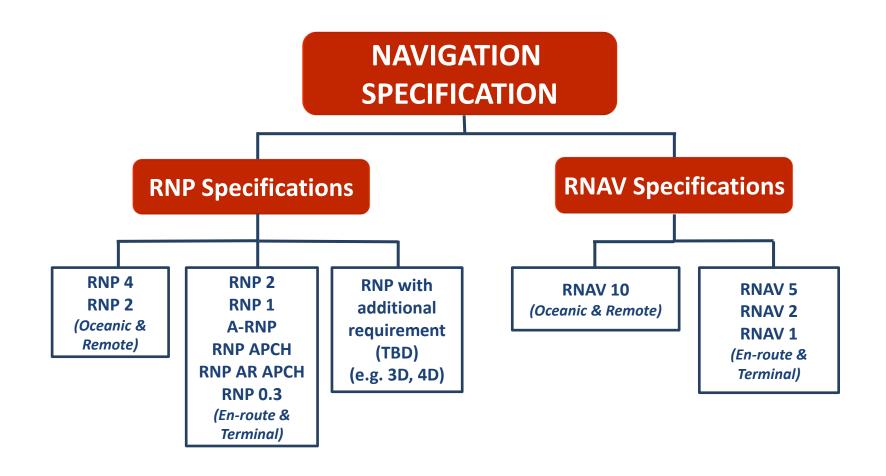


FMS

Navigation Specification

On-Board Performance Monitoring and Alerting

RNAV


RNP

- On-board performance monitoring and alerting capabilities provide:
 - Display and indication of both the required and the estimated navigation system performance
 - Monitoring of the system performance and alerting the crew when RNP requirements are not met

The Key Difference: On-Board Performance Monitoring and Alerting

Navigation Specification

Navigation Specification (PBN Manual, Doc 9613)

Table II-A-1-1. Navigation specification, flight phase, navigation application, and associated RNAV/RNP value (lateral navigation accuracy) (NM)

			Navigation a	pplication, flig	ht phase	and RNAV/RNP	value (N	M)		
		ATS or user-defin	ATS or user-defined routeing			Arrival orocedures Approach procedure				
Part, chapter	Navigation specification	En-route oceanic/remote	En-route continental	Arrival	Initial	Intermediate	Final	Missed ¹	Departure	
B, Ch.1	RNAV 10	10								
B, Ch.2	RNAV 5 ²		5	5						
B, Ch.3	RNAV 2		2	2					2	
B, Ch.3	RNAV 1		1	1	1	1		1	1	
C, Ch.1	RNP 4	4								
C, Ch.2	RNP 2	23	2							
C, Ch.3	RNP 1 ⁷			1	1	1		1	1	
C, Ch.4	Advanced RNP (A-RNP)	23	2 or 1	0.3	0.3	0.3		1 ⁹	0.3	
C, Ch.5	RNP APCH⁴				1	1	0.35	18		
C, Ch.6	RNP AR				1-0.1	1-0.1	0.3- 0.1	1-0.1	1-0.3	
C, Ch.7	RNP 0.3 ⁶		0.3	0.3	0.3	0.3		0.3	0.3	

Navigation Specification (PBN Manual, Doc 9613)

Table II-A-1-4. Navigation specifications and (Required or Optional) NAVAID infrastructure

	GNSS	GNSS/inertial navigation system ³	DME/DME	DME/DME/ inertial navigation system ³	VOR/DME
RNAV 10 ^{1, 4}	0	0			
RNAV 5 ¹	0	0	0	0	0
RNAV 2 ¹ & 1 ¹	0		0	0	
RNP 4	R				
RNP 2	R		O ²	O ²	
RNP 1	R		O ²	O ²	
ADVANCED RNP	R		O^2	O ²	
RNP APCH	R				
RNP AR	R	R			
RNP 0.3	R				

Notes.

1. At least one NAVAID is required for the promulgated associated navigation application.

4. DME and/or VOR may be used to check aircraft navigation accuracy prior to entry into oceanic airspace. DME and/or VOR may also be used to extend the RNAV 10 navigation capability by updating the navigation system, when enroute.

The ½ A/W of the obstacle clearance area in all RNAV and RNP applications (except RNP AR) is based upon the following:

$$\frac{1}{2}$$
 A/W = 1.5*XTT + BV

Where XTT is the 2σ cross-track tolerance value (known as TSE) and BV is the "buffer value

Phase of flight	Navigation specification	XTT
En-route and terminal (>56 km (30 NM) from ARP)	RNAV 5	4.65 km (2.51 NM)
En-route and terminal (>56 km (30 NM) from ARP)	RNAV 1 and 2	3 704 m (2.00 NM)
Terminal (<56 km (30 NM) from ARP) to the IAF	RNAV 1 and 2	1 852 m (1.00 NM)

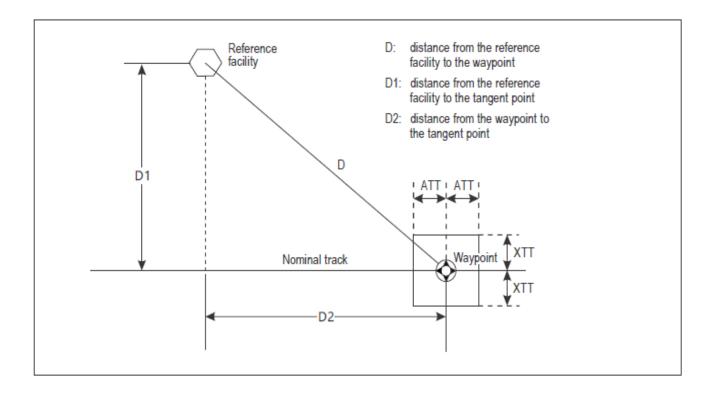
Table III-1-2-2. XTT, ATT and area semi-width for RNP 4 in the en-route phase of flight (NM)

	n-route/STAR/S. (>30 NM ARP)									
XTT	XTT									
4.00	3.20	8.00								

Table III-1-2-4. XTT, ATT, area semi-width for RNP 2 in en-route phase of flight (NM)

En-route/STAR/SID (>30 NM ARP)										
XTT	XTT ATT $\frac{1}{2}A/W$									
2.00	1.60	5.00								

Table III-1-3-8. XTT, ATT, area semi-width for DME RNAV (RNAV 5) in the en-route phase of flight (NM)


Table based on availability of two DME update stations

	En-route/STAR/SI (>30 NM ARP)	D
XTT	ATT	$\frac{1}{2}A/W$
	For all altitudes	
3.30	2.15	6.95

Table III-1-4-2. XTT, ATT, area semi-width for VOR/DME RNAV in the en-route phase of flight (RNAV 5) (NM)

Dl	D2	0	10	20	30	40	50	60	70	80
0	XTT	2.5	2.6	2.9	3.3	3.8	4.3	4.9	5.5	6.1
	ATT	0.3	0.7	1.4	2.1	2.8	3.5	4.2	4.9	5.6
	½ A/W	5.8	4.9	4.8	4.9	5.6	6.4	9.3	9.2	9.5
10	XTT	2.5	2.6	3.0	3.5	4.0	4.7	5.4	6.1	6.8
	ATT	0.3	0.9	1.6	2.4	3.2	4.0	4.7	5.5	6.3
	½ A/W	5.8	6.0	6.5	7.2	8.1	9.0	10.0	11.1	12.2
20	XTT	2.5	2.7	3.0	3.5	4.1	4.7	5.4	6.1	6.8
	ATT	0.3	0.9	1.7	2.4	3.2	4.0	4.8	5.6	6.3
	½ A/W	5.8	6.0	6.5	7.2	8.1	9.1	10.1	11.1	12.2
30	XTT	2.5	2.7	3.0	3.5	4.1	4.7	5.4	6.1	6.8
	ATT	0.3	0.9	1.7	2.5	3.2	4.0	4.8	5.6	6.4
	½ A/W	5.8	6.0	6.5	7.3	8.1	9.1	10.1	11.2	12.3
40	XTT	2.5	2.7	3.0	3.5	4.1	4.8	5.4	6.2	6.9
	ATT	0.3	0.9	1.7	2.5	3.3	4.1	4.8	5.6	6.4
	½ A/W	5.8	6.0	6.5	7.3	8.2	9.1	10.2	11.2	12.3
50	XTT	2.5	2.7	3.0	3.6	4.1	4.8	5.5	6.2	6.9
	ATT	0.3	1.0	1.7	2.5	3.3	4.1	4.9	5.7	6.4
	½ A/W	5.8	6.0	6.6	7.3	8.2	9.2	10.2	11.3	12.4
60	XTT	2.5	2.7	3.1	3.6	4.2	4.8	5.5	6.2	6.9
	ATT	0.3	1.0	1.8	2.6	3.3	4.1	4.9	5.7	6.5
	½ A/W	5.8	6.0	6.6	7.4	8.3	9.2	10.3	11.3	12.4
70	XTT	2.5	2.7	3.1	3.6	4.2	4.8	5.5	6.2	7.0
	ATT	0.3	1.0	1.8	2.6	3.4	4.1	4.9	5.7	6.5
	½ A/W	5.8	6.1	6.6	7.4	8.3	9.3	10.3	11.4	12.4
80	XTT	2.5	2.7	3.1	3.6	4.2	4.9	5.6	6.3	7.0
	ATT	0.4	1.1	1.8	2.6	3.4	4.2	5.0	5.7	6.5
	½ A/W	5.8	6.1	6.7	7.4	8.3	9.3	10.3	11.4	12.5

XTT, ATT, area semi-width for DME RNAV (RNAV 2)(NM)

based on availability of more than two DME update stations

En-route/STAR/SID (>30 NM ARP)

XTT ATT ½ A/W 1.51 1.13 4.26

XTT, ATT and area semi-width for DME RNAV (RNAV 1)(NM)

based on availability of more than two DME update stations

En-route/STAR/SID (>30 NM ARP)

XTT ATT ½ A/W 0.78 0.61 3.18

XTT, ATT and area semi-width for DME RNAV (RNAV 1)(NM)

based on availability of two DME update stations

En-route/STAR/SID (>30 NM ARP)

XTT ATT ½ A/W 1.24 1.13 3.85

Table III-1-2-6. XTT, ATT and area semi-width for RNP-1 (aeroplane) in arrival and departure phases of flight (NM)

	STAR/SID 30 NM AR		(<	STAR/SID 30 NM AR	SID (<15 NM ARP)			
XTT	ATT	½ A/W	XTT	ATT	½ A/W	XTT	ATT	$^{1}\!/_{\!2}A/W$
1.00	0.80	3.50	1.00	0.80	2.50	1.00	0.80	2.00

Table III-1-2-10. XTT, ATT and area semi-width for Advanced RNP in all phases of flight (Aeroplane) (NM)

RNP	En- ro (Contine Remo		ıtal &		STAR/SID 30 NM ARP)		STAR/SID (<30 NM ARP) IAF/IF/Missed Approach		/Missed		FAF	7	<i>MAPt</i>				roach/ M ARP)	
	XTT	ATT	½ A/W	XTT	ATT	½ A/W	XTT	ATT	½ A/W	XTT	ATT	½ A/W	XTT	ATT	½ A/W	XTT	ATT	½ A/W
2	2	1.6	5.0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	1	0.8	3.5	1	0.8	3.5	1	0.8	2.5	_	_	_	_	_	_	1	0.8	2
0.3	_	_	_	_	_	_	_	_	_	0.3	0.24	1.45	0.3	0.24	0.95	_	_	_

