

PNG's IFP Implementation Experience and Lessons Learned.

- GNSS Design Phase I 2017 2019 31 Airports includes Jax SIDs/STARs
- GNSS Design Phase II 2020 2023 7 Airports
- GNSS Design Phase III 2025 2027 9 Airports, RNP AR & SID

29/10/2024

IFP Implementation Experience and Lessons Learned.

Contents

- Organization Overview
 - **Key Statistics**
- Overview of Phases I, II,
 - GNSS Design Phase I 2017 2019 31 Airports includes Jax SIDs/STARs
 - GNSS Design Phase II 2020 2023 7 Airports includes IFP software

WS Oversight of Instrument Flight Procedures (IFPs) Nadi, Fiji,

- GNSS Design Phase III 2025 2027 9 Airports, RNP AR & SID
- Lessons Learned
- Conclusion and Next Steps

Organization Overview

Introduction to NiuSky Pacific Limited (NSPL)

- NiuSky Pacific Limited (NSPL) is the new Corporate Identity of the former PNG Air Services Limited (PNGASL), the sole provider of Air Navigation Services for Papua New Guinea.
- NSPL is a State Aviation Entity (SAE) registered as an independent company in July, 2007. However, its official operations commenced in January, 2008. The Company evolved from a government agency, formally known as the PNG Civil Aviation Authority (CAA), into a self-sustaining commercialised entity as intended by the Government who remains the sole shareholder through the Minister for Finance and the Minister for Civil Aviation.

Key Statistics

- NSPL has a gender diverse workforce of approximately 270 employees, with women making up 42% of the team.
- NSPL holds certifications under CASA PNG Civil Aviation Rules Parts 171, 172 and 175.
- NSPL employs 4 personnel trained in Pans-Ops and Cartography.
- NSPL Pans-Ops personnel frequently participate in ICAO APAC FPP online courses and workshops.
- CASA PNG submitted ICAO APAC FPP Phase V proposal extending PNG's participation as a User State

GNSS Design Project Overview

Project Purpose

Why GNSS? And Importance of satellite-based navigation in aviation.

1) Aging NavAids

- 11 NDBs
- 11 DMEs,
- 4 DVOR;

Challenges: These NavAids were aging, requiring frequent repairs and upgrades to meet operational standards.

2) Costly Maintenance

- High Maintenance Requirements, the upkeep of traditional NavAids demanded significant resources, both financially and in terms of labor.11 DMEs,
- Rising costs, Routine maintenance, parts replacement, and personnel training made these systems increasingly expensive to sustain.

3) Cost of New NavAid Infrastructure

- Investment Needed for Replacement, the cost of replacing outdated NavAids with modern equipment was considerable.
- Benefit of GNSS: GNSS significantly reduced the dependency on ground-based infrastructure, thus minimizing ongoing investment in physical NavAids.

GNSS Design Project Overview

Project Purpose

- Why GNSS?
- 4) Reduced Infrastructure Costs:
 - Satellite-based navigation reduced the need for extensive ground equipment.
- 5) Enhanced Reliability and Precision:
 - GNSS offered higher accuracy and was/is less susceptible to environmental factors affecting ground-based NavAids.
- 6) Future-Proofing Airspace Operations:
 - GNSS aligned with global aviation standards, preparing the PNG airspace for increased traffic and more complex routing.
- 7) Environment:
 - Reduced fuel consumption Efficient Flight Paths: GNSS enables more direct routes and optimized Standard Instrument Departures (SIDs) and Arrivals (STARs).
 - Lower Fuel Use: Reduced flight times and optimized routes result in lower fuel consumption, directly decreasing greenhouse gas emissions.
 - Less ground infrastructure with Lower Environmental Footprint: Fewer installations mean reduced energy and resources required for maintenance and operations, which benefits local environments.

GNSS Design Phase I (2017 -2019)

Scope: 31 Airports

All major Airports including Port Moresby International Airport, Nadzab, Mt Hagen, Madang, Tokua, Goroka.

	AIRPORT NAME	ICAO CODE	STATUS	
1.	AROPA/KIETA ^z	AYIQ	Completed. Awaiting CASA to clear 22FT coordinates before IFP can be published.	
2.	BUKA	AYBK	Completed.	
3.	BULOLO	AYBU	Owned by mining company that did not want an approach designed	
4.	DARU*	AYDU	Completed. Being redesigned due NAC runway works rendering previous design invalid, received OLS reports from NAC May 21 less vital THR coordinates.	
5.	GIRUA/POPENDETTA*	AYGR	Completed. Being part redesigned due NAC runway works rendering previous design invalid, awaiting OLS reports from NAC.	
6.	GOROKA ⁷	AYGA	Completed.	
7.	GURNEY/ALOTAU* är	AYGN	Completed. Being part redesigned due NAC runway works rendering previous design invalid, awaiting OLS reports from NAC.	
8.	HOSKINS/KIMBE	AYHK	Completed.	
9.	KAVIENG*	AYKV	Completed. Being part redesigned due NAC runway works rendering previous design invalid, awaiting OLS reports from NAC.	
10.	KEREMA	AYKM	Completed.	
11.	KIRIWINA/LOSUIA	AYKA	Completed.	

Features:

CASA PNG approved Civil Aviation Rule Part 173 IFP Service Certificate

IFP designed in accordance with CASA PNG IFP Design Manual

Introduction of LNAV, LNAV/VNAV, Standard Instrument Departures (SIDs) and Standard Terminal Arrival Routes (STARs) for Port Moresby.

Achievements:

Successful deployment of GNSS design at 24 of 31 airports Improvements in navigation precision and airport accessibility

NSPL Pans-Ops personnel capacity building during ground & flight validation flights.

GNSS Design Phase II (2020 -2023)

Scope: 7 Airports

- All major domestic Airports including Goroka, Kokoda, Aropa/Kieta, Jacquinot Bay, Telefomin, Kawito and Kandrian.
- Focus on airports targeted for advanced GNSS solutions.

Features:

CASA PNG approved Civil Aviation Rule Part 173 IFP Service Certificate
IFP designed in accordance with CASA PNG IFP Design Manual
Aerodromes redesigned new PBN approaches and 2 SIDs at Goroka and Aropa/Kieta.
Integration of Instrument Flight Procedures (IFP) software for improved route design

Achievements:

Successful deployment of GNSS design at 6 of 7 airports
Improvements in navigation precision and airport accessibility
NSPL expanded capacity with the use of IFP software, enhancing operational efficiency
NSPL Pans-Ops personnel Improved data analysis capabilities for ongoing airport operations
NSPL Pans-Ops personnel capacity building completing ground & flight validation flights.

Lessons Learned

Challenges Faced:

200 plus aerodromes needing PBN approaches

Papua New Guinea's rugged terrain, with high mountains and deep valleys, makes traditional navigation challenging.

9 aerodromes underwent runway resurfacing after IFP published

CAR 173 IFP Service Certificate contract review, Contract Change Proposals

Key Takeaways:

Collaboration with CASA on delegation of function for Phase II flight validation NSPL Pans-ops team exposure to advanced flight validation equipment (GPS, IPAD)

ATC training to Goroka ATS personnel

Future Recommendations:

Improved ICAO criteria to assist GNSS design and deployment for future projects

Air Traffic Services

KOKODA(AYKO), TELEFOMIN(AYTE), KAWITO(AYKW), KANDRIAN(AYKC) & JACQUINOT BAY(AYJB).

NEW GNSS APP

Safety Case

	NAME/POSITION	SIGNATURE	DATE
Prepared By	Nelisa Katsin Manager AIS	Mag 2	17/14/2
	Italtia M. Tabakaucoro Manager SMS/QA/RC	(Allona	17/04/24

Conclusion and Next Steps

Summary of GNSS Progress:


- Recap achievements of Phases I and II objective
 - Focus on airports targeted for advanced GNSS solutions.

Looking Ahead:

Regional solution for PIS's IFP initiatives through close collaboration with CASA PNG and ICAO

APAC PSIDs.

Q&A

