

Implementing Baro-VNAV PHILIPPINE Experience

APAC FPP Procedure Design Seminar 17-19 September 2019

JESSICA ADELINE D. JAMERO
CIVIL AVIATION AUTHORITY OF THE PHILIPPINES

A BIT OF HISTORY

A36-23: ICAO 36th Assembly endorses PBN implementation (2007)

"The Assembly:

Urges all States to implement RNAV and RNP air traffic services (ATS routes and approach procedures in accordance with the ICAO PBN concept laid down in the Performance-based Navigation (PBN) Manual (Doc 9613);

2. Resolves that:

- a. States and planning and implementation regional groups (PIRGs) complete a **PBN implementation plan** by 2009 to achieve:
- 2) implementation of approach procedures with vertical guidance (APV) (Baro-VNAV and/or augmented GNSS) for all instrument runway ends, either as the primary approach or as back-up for precision approaches by 2016 ..."

A BIT OF HISTORY

A37-11: Modification of A36-23 (2010)

"The Assembly:

1. Urges all States to implement RNAV and RNP air traffic services (ATS routes and approach procedures in accordance with the ICAO PBN concept laid down in the Performance-based Navigation (PBN) Manual (Doc 9613);

2. Resolves that:

- a. States complete a PBN implementation plan as a matter of urgency to achieve:
- 2) implementation of approach procedures with vertical guidance (APV) (Baro-VNAV and/or augmented GNSS), including LNAV-only minima, for all instrument runway ends, either as the primary approach or as back-up for precision approaches by 2016 ..."

IMPLEMENTING PBN IN AIRPORTS

Strategy of improving airport accessibility through development of instrument flight procedures to:

- -improve safety/airport accessibility
- -meet the ICAO Assembly Resolution A37-11 and APAC Seamless ATM Plan
- PBN in International Airports: 2010-2016

Available in 9 International Airports

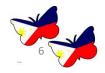
- -Back-up to existing ground-based procedure (ILS and VOR) during outages, maintenance
- PBN in Domestic Airports: 2012-2019
 - -Available in 9 Domestic airports
 - -Reduce CFITs/increase airport accessibility
- PBN in Non-Instrument Runways: 2019-
- $_{9/17-19/2019}$ -improve safety

IMPLEMENTING APV/LNAV-VNAV

Approach with vertical guidance (APV)

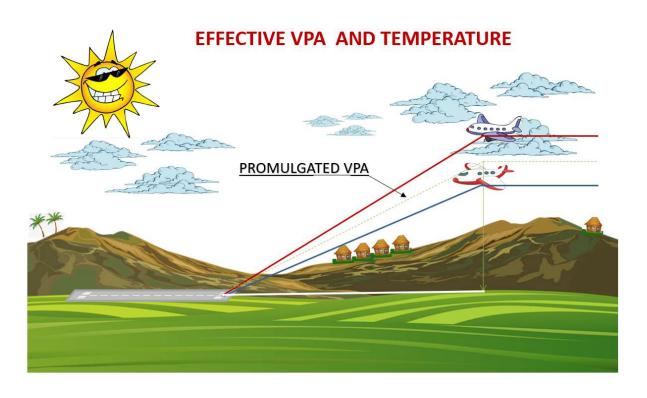
An instrument approach procedure which utilizes lateral and vertical guidance but does not meet the requirements established for precision approach and landing operations

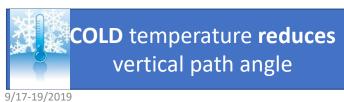
<u>Barometrical vertical navigation</u> (baro-VNAV) is a navigation system that presents to the pilot computed vertical guidance referenced to a specified vertical path angle (VPA).

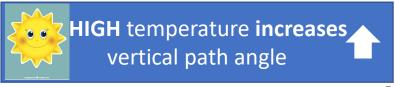


IMPLEMENTING APV/LNAV-VNAV

III-3-4.7 PROMULGATION (Doc 8168 Vol II)

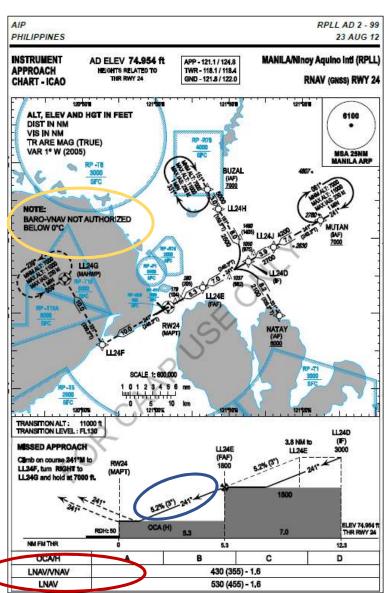

- a) OCA/H
- b) RDH
- c) VPA
- d) Minimum temperature for which APV/Baro-VNAV operations are authorized
- e) Temperature above which EFFECTIVE VPA will exceed 3.5°; and,
- f) LNAV FAF and MAPt (for database coding purposes only)


TEMPERATURE LIMITATIONS



"Minimum temperature for which APV/Baro-VNAV operations are authorized."

TAN _{MIN/MAX VPA} =(Height FAP-Tcorr-RDH)/D _{FAP TH}



7

IMPLEMENTING APV/LNAVVNAV

I. Promulgating MIN TEMPERATURE

Mean Low temperature
Coldest month of the year
Last 5 years
Round down to the next 5-10 increments

Table III-3-4-1. Effective vs promulgated VPA as a function of aerodrome elevation and temperature (Green = optimum; Yellow = non-standard; Orange = prohibited)

Promulgated VPA | Promulgated VPA | Promulgated VPA | 2.8° | 3.7° | 3.7° | 3.7°

	Promulgated VPA 2.8° Aerodrome elevation			Promulgated VPA 3.0° Aerodrome elevation			Promulgated VPA 3.2° Aerodrome elevation		
Temp (C°)									
	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 ft
50	3.14	3.21	3.28	3.37	3.44	3.51	3.59	3.67	3.75
40	3.05	3.11	3.18	3.26	3.33	3.40	3.48	3.55	3.63
30	2.95	3.01	3.07	3.16	3.22	3.29	3.37	3.44	3.51
20	2.85	2.91	2.97	3.05	3.12	3.18	3.26	3.32	3.40
10	2.75	2.81	2.87	2.95	3.01	3.07	3.14	3.21	3.28
0	2.65	2.71	2.77	2.84	2.90	2.96	3.03	3.10	3.16
-10	2.55	2.61	2.66	2.74	2.79	2.85	2.92	2.98	3.04
-20	2.46	2.51	2.56	2.63	2.69	2.74	2.81	2.87	2.93
-30	2.36	2.41	2.46	2.53	2.58	2.63	2.70	2.75	2.81
-40	2.26	2.31	2.36	2.42	2.47	2.53	2.58	2.64	2.70
-50	2.16	2.21	2.26	2.32	2.36	2.42	2.47	2.52	2.58

EFFECTIVE VPA- temperature and aerodrome elevation dependent

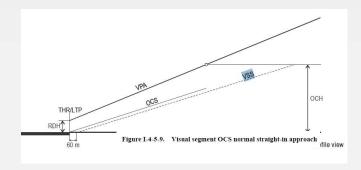
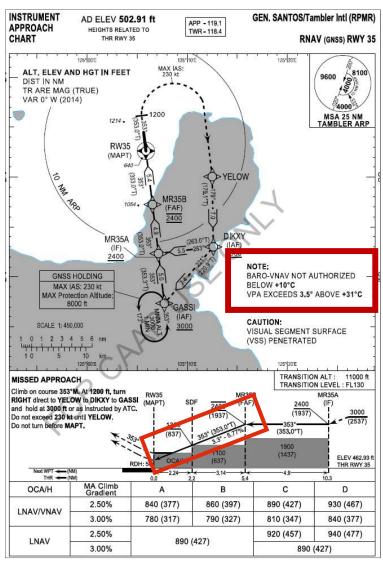

PROMULGATED VPA -effective VPA throughout the year is as close as possible to 3.0°

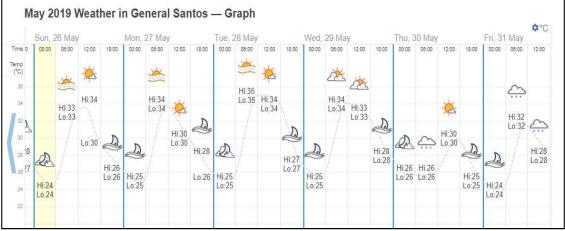
Table III-3-4-1. Effective vs promulgated VPA as a function of aerodrome elevation and temperature (Green = optimum; Yellow = non-standard; Orange = prohibited)

	Promulgated VPA 2.8° Aerodrome elevation			Promulgated VPA 3.0° Aerodrome elevation			Promulgated VPA 3.2° Aerodrome elevation		
Temp (C°)	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 f
50	3.14	3.21	3.28	3.37	3.44	3.51	3.59	3.67	3.75
40	3.05	3.11	3.18	3.26	3.33	3.40	3.48	3.55	3.63
30	2.95	3.01	3.07	3.16	3.22	3.29	3.37	3.44	3.51
20	2.85	2.91	2.97	3.05	3.12	3.18	3.26	3.32	3.40
10	2.75	2.81	2.87	2.95	3.01	3.07	3.14	3.21	3.28
0	2.65	2.71	2.77	2.84	2.90	2.96	3.03	3.10	3.16
-10	2.55	2.61	2.66	2.74	2.79	2.85	2.92	2.98	3.04
-20	2.46	2.51	2.56	2.63	2.69	2.74	2.81	2.87	2.93
-30	2.36	2.41	2.46	2.53	2.58	2.63	2.70	2.75	2.81
-40	2.26	2.31	2.36	2.42	2.47	2.53	2.58	2.64	2.70
-50	2.16	2.21	2.26	2.32	2.36	2.42	2.47	2.52	2.58


PROMULGATED VPA is the LNAV descent gradient.

Consideration of obstacle clearance on final

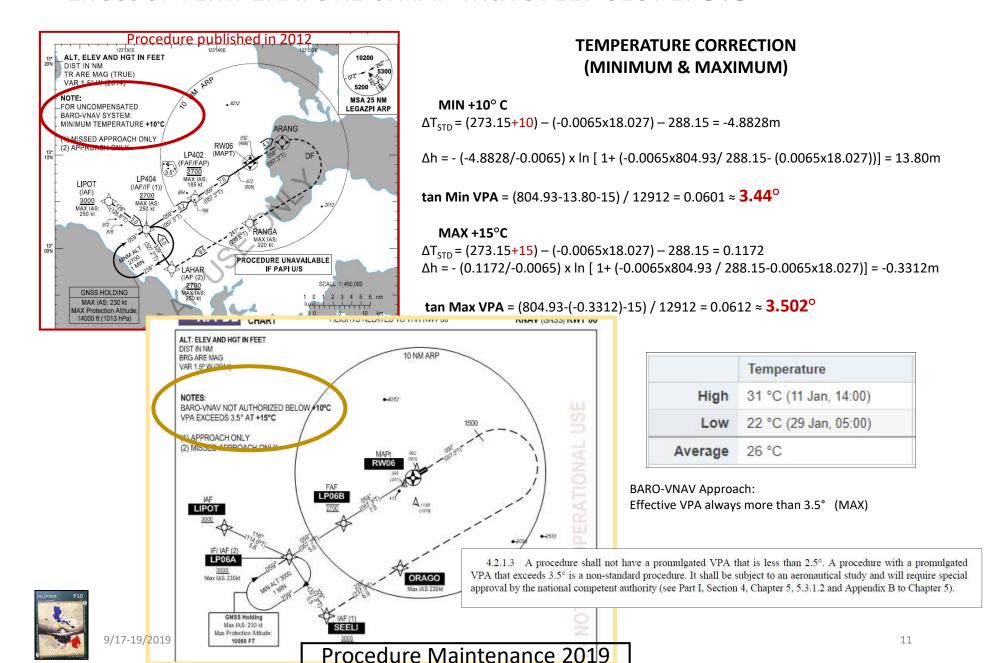
Effect of TEMPERATURE on the IAP with STEEP SLOPE: 3.3°



ISA + 30

Minimum Temperature: +10°

Maximum Temperature: +31°


Promulgated VPA = LNAV descent gradient

	Temperature
High	35 °C (28 May, 11:00)
Low	23 °C (10 May, 05:00)
Average	28 °C

10 SVNIA

Effect of TEMPERATURE on IAP with STEEP SLOPE: 3.5°

OTHER CONSIDERATIONS

- HL Correction for Steep Glide Path>3.2
 TABLE III-3-6-3. Height Loss/Altimeter margin
 HLr x (5/100) x [VPA-3.2)/0.1]
- 2. **ORIGIN OF MISSED APPROACH** Xz (-900,-1100,-1400)m

Due to VPA above 3.2°:

```
Xz Cat A = min [-900, (41-15)/tan3.3 - (444+2x56xsin3.3/0.78x(56+5.15))]

Cat B = min [-900, (44-15)/tan3.3 - (444+2x72xsin3.3/0.78x(72+5.15))]

Cat C = min [-1100, (48-15)/tan3.3 - (444+2x89xsin3.3/0.78x(89+5.15))]

Cat D = min [-1400, (51-15)/tan3.3 - (444+2x104xsin3.3/0.78x(104+5.15))]
```


SOME POINTS TO CONSIDER

- 1) OCA/H of Baro-VNAV lower than LNAV.
- 2) Publication of MINIMUM TEMPERATURE should be a case to case basis.

Promulgated VPA= 3°	3.3°	3.5°	
Min TEMP ≤2.5° = -30°C	-50°	-60°	
Max TEMP ≥3.5° = +62°C	+31°C	+15°C	

3) IF the effective VPA is expected to be >3.5°, require special approval? Let the pilot decide? Promulgate the procedure in a different chart?

9/17-19/2019

PAN-OPS Vol II I-4.8

provide a minimum clearance of 300 m (1000 ft) above all objects located in an area contained within a sector of a circle of 46 km (25NM) radius centered on a significant point, the aerodrome reference point (ARP) or the heliport reference point.

- -mandatory for IAPs
- -to be provided in ARRIVAL ROUTES where TAAs are not provided
- -MOC increased in mountainous areas
- -at least 300 ft difference between two adjacent sectors

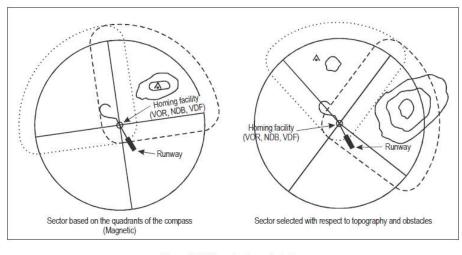
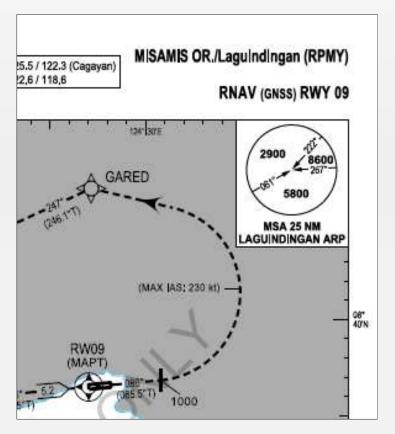


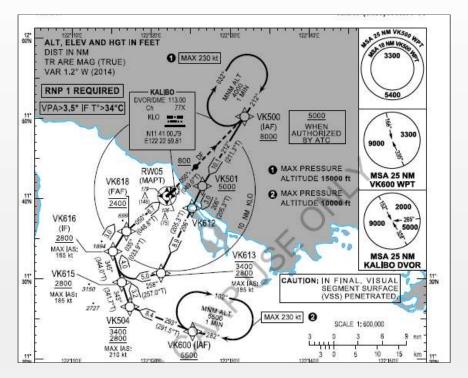
Figure I-4-8-1. Sector orientation

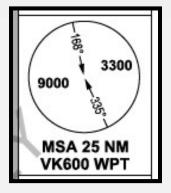


Conventional procedure centered on VOR/DME

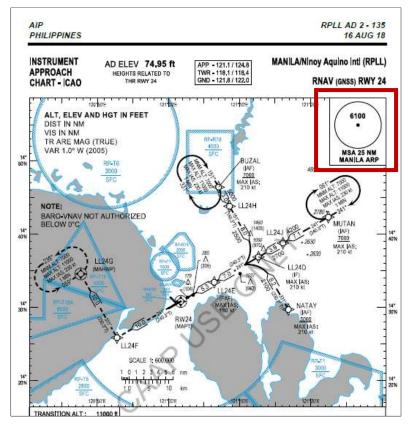
MISAMIS OR./ LAGUINDINGAN (RPMY) ILS OR LOC RWY 27 124" 40'E - EQPT REQUIRED -DME VOR AF (ANIKA)-MSA 25 NM LGD DVOR D12.0 LGD N08 43 43 69 E124 37 03 80 MAX JAS: 230 kt R 076° 08" 40"N

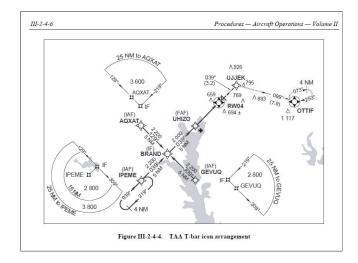
PBN procedures centered on the ARP




9/17-19/2019

MSA in terrain challenged airports

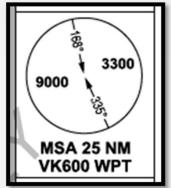




centered on a significant point

- -Found in most RNP APCH charts elsewhere
- Preferred by some pilots as it would be difficult to determine a radial or track to a point (ARP) if it is going to a different point (IAF) or to determine the distance from a point.
- -For ATCs, little benefit to facilitate descent in some complex environment
 - -TAA Stepdown Arcs and subsectors

PAN-OPS Vol II I-4.8


provide a minimum clearance of 300 m (1000 ft) above all objects located in an area contained within a sector of a circle of 46 km (25NM) radius centered on a significant point, the aerodrome reference point (ARP) or the heliport reference point.

FOR PBN:

WHAT COULD BE THE MOST APPROPRIATE?

REFERENCES

- 1. Doc 8168 Vol II (6th ed.) 2014
- 2. https://www.icao.int
- 3. Philippine AIP Amendment 72
- 4. timeanddate.com
- 5. freepik.com
- 6. flickr.com/photos/jinkydabon
- 7. dreamstime.com
- 8. CAAP ICAO Anniversary stamp contest