Ionospheric Corrections for GNSS

The Atmosphere and its Effect on GNSS Systems 14 to 16 April 2008 Santiago, Chile

Ing. Roland Lejeune

Jos and the set of the

Overview

- Ionospheric delay corrections
 - Core constellations
 - GPS
 - GALILEO
 - SBAS
 - GBAS
 - Receiver

Core Constellation Models

- GPS and GALILEO use different models
- In both cases, these are simple models driven by a small number of coefficients broadcast by the satellites
 - Ground Control regularly updates the coefficients to account for the state of the ionosphere
- Such simple models are able to approximately reproduce the average historical behavior of the ionosphere
- But are unable to account for particular behaviors that may exist at any particular time and location
 - Ionospheric irregularities and storm effects, equatorial anomalies, depletions, etc.

GPS Single-frequency Model

- GPS broadcasts 8 coefficients allowing user receivers to compute ionospheric delay estimates based on a simple single-frequency global ionospheric model (Klobuchar)
 - The 8 coefficients are regularly updated to account for observed changes in the state of the ionosphere
 - The model can only account for predictable variations due to time of day and latitude
 - The model corrects statistically about 50% of iono delays
 - Corrections are better during quiet ionospheric conditions than during ionospheric storms
 - User receivers apply a standardized obliquity factor to convert between vertical and slant delays

GALILEO Single-Frequency Model

- GALILEO uses a 3-D model called NeQuick
- The model is driven by an "effective ionization level," Az
 - GALILEO broadcasts 3 coefficients
 - The user uses them to compute Az given its geomagnetic coordinates
- The NeQuick model then uses Az to compute a range delay along the line-of-sight

The "Thin Shell" Model 1 of 2

- The "thin shell" approximation to the ionosphere (i.e., the propagation delays it causes) is used by GPS and SBAS
 - The model collapses the ionosphere to a thin shell at an altitude of 350 km
 - Ionospheric delays occur when the signals cross the shell (and nowhere else along the line line-of-sight)
 - The magnitude of the delay is a one-to-one function of the angle with which the line-of-sight crosses the thin shell
 - GPS and SBAS models provide estimates of vertical delays; from which the user derives slant delays
- GALILEO and GBAS do not rely on the thin shell model

Figure from the SBAS MOPS, DO-229D

172 of 301

- The ionosphere is treated as if it were a thin shell at 350 km above the Earth's Surface
- Slant Delay = Obliquity factor x Vertical delay
- GPS and SBAS broadcast vertical delay information

SBAS lonospheric Corrections 1 of 2

- SBAS broadcasts vertical iono corrections (IGDs) and error "bounds" (GIVEs) at ionospheric grid points (IGPs)
- User receivers interpolate between IGPs and apply an obliquity factor to convert between vertical and slant delays and error bounds
- GIVEs provide users with "overbounding sigmas" (i.e., conservative estimates of the standard deviation) for the residual errors
 - These are high integrity estimates (probability of misleading information < 1 x 10⁻⁷)
 - Ensuring this level of integrity is one of the main challenges of developing SBAS iono algorithms

SBAS lonospheric Corrections 2 of 2

- SBAS calculates vertical iono corrections (IGDs) and error "bounds" (GIVEs) from dual-frequency measurements
 - Reference receivers use semi-codeless technique for tracking L2
- Prior to that, SBAS must estimate (and correct for) satellite and reference receiver L1/L2 inter-frequency biases
 - This is done by processing all available iono delay measurements generally using a Kalman Filter and an appropriate ionospheric delay model
 - E.g., rotating triangular grid, 2-D polynomial model

SBAS Ionospheric Grid

SBAS World-Wide Ionospheric Grid (without Bands 9 and 10) -- SBAS MOPS 175 of 301

GBAS Mitigation Technique

- GBAS broadcasts pseudorange corrections for each satellite in view
 - The corrections correct for common errors between the ground station and the user
 - They account for a combination of ranging errors including ionospheric delay errors, and satellite clock and ephemeris errors
- A current area of intense research is concerned with the effect of potentially large, local gradients during ionospheric storms
 - These gradients could result in a large difference between the ionospheric delays seen by the ground station and those seen by the user

Dual-Frequency Operations 1 of 2

- In the near future (officially in about 2014, but it may be a few years later), GPS and GALILEO will broadcast civil signals at two or more frequencies
 - GPS L1 and L5; GALILEO E1, E5a and E5b
- User receivers will then be able to compute iono-free pseudorange measurements
 - i.e., eliminate the ionospheric delay without requiring a model, or external information
- This will open many new possibilities
 - APV without the need for SBAS ionospheric corrections
 - In the equatorial area and during ionospheric storms

Dual-Frequency Operations 2 of 2

- Additionally, using GPS and GALILEO in combination will provide higher accuracy, availability and continuity of service
 - This will reduce the role of SBAS to an integrity monitoring function
- In the longer term (2030?), GPS III promises even greater accuracy, faster response time, and improved integrity
 - RAIM may then be sufficient to fly LPV-200 procedures (current area of research)
 - New RAIM algorithms capable of dealing with all LPV-200 requirements are being investigated