Overview of Continental En-route Navigation Specifications

RNAV 5, RNAV 2 and RNAV 1
Learning Objectives

• RNAV applications in a continental en-route context
• Characteristics of available navigation specifications
 – RNAV 5, RNAV 2 and RNAV 1
• RNAV 5
 – ANSP considerations
 – Navigation specification
• Example implementation
 – ECAC Basic-RNAV (B-RNAV)
• Summary
Application of Navigation Specification by Flight Phase

<table>
<thead>
<tr>
<th>NAVIGATION SPECIFICATION</th>
<th>En Route Oceanic / Remote</th>
<th>En Route Continental</th>
<th>FLIGHT PHASE</th>
<th>APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARR</td>
<td>Initial</td>
<td>Intermed</td>
<td>Final</td>
</tr>
<tr>
<td>RNAV 10 (RNP 10)</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RNAV 5</td>
<td>5*</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV 2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RNP 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic-RNP 1</td>
<td>1a,c</td>
<td>1a</td>
<td>1a</td>
<td>1a,b</td>
</tr>
<tr>
<td>RNP APCH</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>RNP AR APCH</td>
<td>1 - 0.1</td>
<td>1 - 0.1</td>
<td>0.3 - 0.1</td>
<td>1 - 0.1</td>
</tr>
</tbody>
</table>

* Above MSA
The PBN Manual

Volume II, Part B

Chapter 2, Implementing RNAV 5
Chapter 3, Implementing RNAV 1 and RNAV 2
• Multiple navigation specifications available
• Need to assess available:
 – Communication
 – Surveillance
 – Navigation infrastructure
• Need to identify requirements for:
 – route spacing and aircraft separation
 ➢ Function of traffic density; operational error; route configuration etc.
 – navigation performance
 – aircraft functionality
RNAV 5

- **Characteristics**
 - ± 5 NM for 95% of the flight time
 - Typically in a radar surveillance environment
 - Typical route spacing – Low ATC intervention rate
 - 16.5 NM uni-directional
 - 18 NM bi-directional
 - Typical route spacing – High ATC intervention rate
 - 10 -15 NM
 - Predicated on VOR/DME as a minimum
 - Designed for lowest common denominator
RNADV 2

- Characteristics
 - ± 2 NM for 95% of total flight time
 - Radar surveillance
 - Route spacing at least 8 NM
 - Typical routes (FL180 and above)
 - Authorised for GNSS or DME/DME/IRU (where the infrastructure supports such routes)
 - Typical routes (Below FL180)
 - GNSS required
RNAV 1

• Characteristics
 – ± 1 NM for 95% of total flight time
 – Radar surveillance
 – Route spacing tbd
 – Authorised for GNSS or DME/DME or DME/DME/IRU (depending on available infrastructure)

• Implementation in Continental En-route doesn’t exist today
RNAV 2 and RNAV 1

- Also used in terminal airspace applications
 - SIDs, STARS, runway transitions

- **Greater functional capability**
 - Path terminators
 - Display requirements
 - Navigation database

- The navigation specification is the navigation specification, not the application

- See the next presentation
RNAV 5

• **Background**
 - ECAC B-RNAV

• **Purpose**
 - An RNAV application
 - Not requiring onboard performance monitoring and alerting
 - Other considerations
 - AIPs, ICAO Regional Supplementary Procedures
ANSP Considerations

• Navaid Infrastructure
• Comm and ATS surveillance
• Obstacle clearance and route spacing
 – Leg transitions
• Publication
• Controller training
• ATS system monitoring
Navigation Specification – Aircraft Requirements

• System performance
 – Lateral total system error ±5 NM for 95% of the flight time
 – Integrity (misleading information = Major FC)
 – Continuity (loss of function = Minor FC)
Navigation Specification – Aircraft Requirements

• Specific navigation services
 – INS/IRS
 – VOR
 – DME
 – GNSS
Navigation Specification – Aircraft Requirements

• Functional requirements
 – Continuous indication of position relative to track
 – Distance and bearing to the active (To) waypoint
 – Ground speed or time to the active (To) waypoint
 – Only 4 waypoints held in system at a time
 – Failure indication of the RNAV system
Navigation Specification – Aircraft Requirements

• What RNAV 5 doesn’t have
 – No navigation database - waypoints can be manually entered
 – No fly-by capability
 – No ‘Direct To’ function
Navigation Specification – Operational Considerations

- Flight planning
 - For example, “R” in field 10 for B-RNAV

- ABAS availability

- General operating procedures
 - Cross-track error monitoring

- Contingency procedures

- Training

- Navigation database
Navigation Specification – Approval Process

• Navigation specification does not in itself constitute regulatory guidance
• Aircraft certification
• Operator approved under National operating rules
• Does not require re-certification
• B-RNAV approval is good-to-go for RNAV 5
 – EASA AMC 20-4
 – FAA AC 90-96A
 – Operating approval (as required)
Example of State Implementation - RNAV 5

- B-RNAV implemented in ECAC on 23 April 1998
- Europe’s first step
- Minimum level FL95
- Contingency predicated on continued carriage of VOR, DME and/or ADF
Northern France – After RNAV 5

Eurocontrol - DAS/AFN
Network 30/01/2004
WAYPOINT
Geneva – Before and After RNAV 5
Swiss Sectorisation – Before and After RNAV 5
B-RNAV Benefits

- Introduced a system of specialised routes
- Pre-organised the flows e.g., segregation of overflying traffic from climbing and descending traffic
- Track alignment – origin to destination
- Re-sectorisation a consequence
 - In Swiss example resulted in 30% increase in capacity
Lessons Learned

• Only maximise benefits with an airspace re-design

• Can not do RNAV implementation in isolation
 – Consider consequences of En-route change on terminal airspace e.g. connectivity into and out of
 – Particular issue given terminal airspace was non-RNAV

• Equipage and approvals
Summary

• Learning objectives
 – RNAV applications in a continental en-route context
 – Characteristics of available navigation specifications
 ➢ RNAV 5, RNAV 2 and RNAV 1

• RNAV 5 in detail
 – ANSP considerations
 – Navigation specification

• Example of State implementation - RNAV 5
 – Before and after ECAC B-RNAV
 – Lessons learned
Feedback and Questions