Objective

- At the end of this module, participants will be able to explain the strengths and weaknesses of traditional methods to manage safety, and describe new perspectives and methods for managing safety.

Outline

- Concept of safety
- The evolution of safety thinking
- A concept of accident causation – Reason model
- The organizational accident
- People, context and safety – SHELL model
- Errors and violations
- Organizational culture
- Safety investigation
- Questions and answers
- Points to remember
- Exercise Nº 02/01 – The Anytown City Airport accident (See Handout Nº 1)
Concept of safety

- **What is safety**
 - Zero accidents (or serious incidents)?
 - Freedom from danger or risks?
 - Error avoidance
 - Regulatory compliance?
 - ...?

Concept of safety

- **Consider (the weaknesses in the notion of perfection)**
 - The elimination of accidents (and serious incidents) is unachievable.
 - Failures will occur, in spite of the most accomplished prevention efforts.
 - No human endeavour or human-made system can be free from risk and error.
 - **Controlled** risk and **controlled** error is acceptable in an inherently safe system.

Concept of safety (Doc 9859)

- **Safety** is the state in which the risk of harm to persons or property damage is reduced to, and maintained at or below, an **acceptable level** through a **continuing process** of **hazard identification** and **risk management**.

Safety

- **Traditional approach – Preventing accidents**
 - Focus on outcomes (causes)
 - Unsafe acts by operational personnel
 - Attach blame/punish for failures to "perform safely"
 - Address identified safety concern effectively

 HOW

 WHAT?
 WHO?
 WHEN?
 WHY?
 "But not always disclosed"
The evolution of safety thinking

1950s 1970s 1990s 2000s

TECHNICAL FACTORS → HUMAN FACTORS → ORGANIZATIONAL FACTORS → TODAY

A concept of accident causation

Latent conditions trajectory

Organization Workplace People Defences Accident

Management, deciding and organizational processes

Inadequate hazard identification and risk management

Normalization of deviance

Source: James Reason

The organizational accident

Organizational processes

- Policy-making
- Planning
- Communication
- Allocation of resources
- Supervision
- ...”

Conditions present in the system before the accident, made evident by triggering factors.

Activities over which any organization has a reasonable degree of direct control
The organizational accident

Organizational processes

- Workplace conditions
 - Technology
 - Training
 - Regulations

- Active failures
 - Errors
 - Violations

- Defences

Resources to protect against the risks that organizations involved in production activities generate and must control.

The organizational accident

Organizational processes

- Workplace conditions
 - Workforce stability
 - Qualifications and experience
 - Morale
 - Credibility
 - Ergonomics
 - ...

- Active failures
 - Errors
 - Violations

- Defences

Factors that directly influence the efficiency of people in aviation workplaces.

The organizational accident

Organizational processes

- Workplace conditions
 - Errors
 - Violations

- Active failures
 - Errors
 - Violations

- Defences

Actions or inactions by people (pilots, controllers, maintenance engineers, aerodrome staff, etc.) that have an immediate adverse effect.
People and safety

- Aviation workplaces involve complex interrelationships among its many components.
- To understand operational performance, we must understand how it may be affected by the interrelationships among the various components of the aviation workplace.

Processes and outcomes

Causes and consequences of operational errors are not linear in their magnitude.

The SHEL(L) model

Understanding the relationship between people and operational contexts

- Software
- Hardware
- Environment
- Liveware
- Liveware, other persons
Operational performance and technology

- In production-intensive industries like contemporary aviation, technology is essential.
- As a result of the massive introduction of technology, the operational consequences of the interactions between people and technology are often overlooked, leading to human error.

Understanding operational errors

- Human error is considered a contributing factor in most aviation occurrences.
- Even competent personnel commit errors.
- Errors must be accepted as a normal component of any system where humans and technology interact.

Errors and safety – A non linear relationship

Statistically, millions of operational errors are made before a major safety breakdown occurs.

Accident investigation – Once in a million flights

- Flaps omitted
- Checklist failure
- Unheeded warning
- Error
- Deviation
- Amplification
- Degradation/breakdown
Safety management – On almost every flight

- Flaps omitted
- Checklist works
- Effective warning
- Degradation/breakdown

Three strategies for the control of human error

- Error reduction strategies intervene at the source of the error by reducing or eliminating the contributing factors.
 - Human-centred design
 - Ergonomic factors
 - Training
 - ...

Three strategies for the control of human error

- Error capturing strategies intervene once the error has already been made, capturing the error before it generates adverse consequences.
 - Checklists
 - Task cards
 - Flight strips
 - ...

Three strategies for the control of human error

- Error tolerance strategies intervene to increase the ability of a system to accept errors without serious consequence.
 - System redundancies
 - Structural inspections
 - ...

ICAO Safety Management Systems (SMS) Course
Module N° 2 – Basic safety concepts
Understanding violations – Are we ready?

Culture

- Culture binds people together as members of groups and provides clues as to how to behave in both normal and unusual situations.
- Culture influences the values, beliefs and behaviours that people share with other members of various social groups.

Three cultures

- National culture encompasses the value system of particular nations.
- Organizational/corporate culture differentiates the values and behaviours of particular organizations (e.g. government vs. private organizations).
- Professional culture differentiates the values and behaviours of particular professional groups (e.g. pilots, air traffic controllers, maintenance engineers, aerodrome staff, etc.).
- No human endeavour is culture-free
Organizational/corporate culture

- Sets the boundaries for acceptable behaviour in the workplace by establishing norms and limits.
- Provides a framework for managerial and employee decision-making
 - “This is how we do things here, and how we talk about the way we do things here”.
- Organizational/corporate culture shapes – among many others – safety reporting procedures and practices by operational personnel.

Safety culture

- A trendy notion with potential for misperceptions and misunderstandings
 - A construct, an abstraction
 - It is the consequence of a series of organizational processes (i.e., an outcome)
- Safety culture is not an end in itself, but a means to achieve an essential safety management prerequisite:
 - Effective safety reporting

Effective safety reporting – Five basic traits

- **Information**: People are knowledgeable about the human, technical and organizational factors that determine the safety of the system as a whole.
- **Flexibility**: People can adapt reporting when facing unusual circumstances, shifting from the established mode to a direct mode thus allowing information to quickly reach the appropriate decision-making level.
- **Learning**: People have the competence to draw conclusions from safety information systems and the will to implement major reforms.
- **Willingness**: People are willing to report their errors and experiences.
- **Accountability**: People are encouraged (and rewarded) for providing essential safety-related information. However, there is a clear line that differentiates between acceptable and unacceptable behaviour.

Three options

- **Pathological** – Hide the information
- **Bureaucratic** – Restrain the information
- **Generative** – Value the information

Sources:
- Ron Westrum
Three possible organizational cultures

<table>
<thead>
<tr>
<th>Pathological</th>
<th>Bureaucratic</th>
<th>Generative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>Hidden</td>
<td>Ignored</td>
</tr>
<tr>
<td>Messengers</td>
<td>Shouted</td>
<td>Tolerated</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>Shirked</td>
<td>Boxed</td>
</tr>
<tr>
<td>Reports</td>
<td>Discouraged</td>
<td>Allowed</td>
</tr>
<tr>
<td>Failures</td>
<td>Covered up</td>
<td>Merciful</td>
</tr>
<tr>
<td>New ideas</td>
<td>Crushed</td>
<td>Problematic</td>
</tr>
<tr>
<td>Resolving organization</td>
<td>Conflicted organization</td>
<td>“Red tape” organization</td>
</tr>
</tbody>
</table>

Source: Ron Westrum

Safety investigation

- For “funereal” purposes
 - To put losses behind
 - To reassert trust and faith in the system
 - To resume normal activities
 - To fulfill political purposes

- For improved system reliability
 - To learn about system vulnerability
 - To develop strategies for change
 - To prioritize investment of resources

Investigation

- The facts
 - An old generation four engine turboprop freighter flies into severe icing conditions.
 - Engines 2 and 3 flameout as consequence of ice accretion, and seven minutes later engine 4 fails.
 - The flight crew manages to re-start engine number 2.
 - Electrical load shedding is not possible, and the electrical system reverts to battery power.
 - ...

Investigation

- ... The facts
 - While attempting to conduct an emergency landing, all electrical power is lost.
 - All that is left to the flight crew is the self-powered standby gyro, a flashlight and the self-powered engine instruments.
 - The flight crew is unable to maintain controlled flight, and the aircraft crashes out of control.
Investigation

Findings
- Crew did not use the weather radar.
- Crew did not consult the emergency check-list.
- Demanding situation requiring decisive thinking and clear action.
- Conditions exceeded certification condition for the engines.
- Did not request diversion to a closer aerodrome.
- ...

Causes
- Multiple engine failures
- Incomplete performance of emergency drills
- Crew actions in securing and re-starting engines
- Drag from unfeathered propellers
- Weight of ice
- Poor CRM
- Lack of contingency plans
- Loss of situational awareness

Safety recommendations
- Authority should remind pilots to use correct phraseology.
- Authority should research into most effective form of presentation of emergency reference material.

Investigation

... Findings
- Crew did not use correct phraseology to declare emergency.
- Poor crew resource management (CRM).
- Mismanagement of aircraft systems.
- Emergency checklist – presentation and visual information.
- Flight operations internal quality assurance procedures.

Investigation

Safety recommendations
- Authority should remind pilots to use correct phraseology.
- Authority should research into most effective form of presentation of emergency reference material.
Investigation

The facts
- An old generation two engine turboprop commuter aircraft engaged in a regular passenger transport operation is conducting a non-precision approach in marginal weather conditions in an uncontrolled, non-radar, remote airfield.
- The flight crew conducts a straight-in approach, not following the published approach procedure.
- ...

Investigation

... The facts
- Upon reaching MDA, the flight crew does not acquire visual references.
- The flight crew abandons MDA without having acquired visual references to pursue the landing.
- The aircraft crashes into terrain short of the runway.

Investigation

Findings
- The crew made numerous mistakes.

But
- Crew composition legal but unfavourable in view of demanding flight conditions.
- According to company practice, pilot made a direct approach, which was against regulations.
- ...

Investigation

... But
- The company had consistently misinterpreted regulations.
- Level of safety was not commensurate with the requirements of a scheduled passenger operation.
- Aerodrome operator had neither the staff nor the resources to ensure regularity of operations.
- ...

ICAO Safety Management Systems (SMS) Course
Module N° 2 – Basic safety concepts
Investigation

✓ ... But

► Lack of standards for commuter operations.
► Lack of supervision of air traffic facilities.
► Authorities’ disregard of previous safety violations.
► Legislation out of date.
► ...

Investigation

✓ ... But

► Conflicting goals within the authority.
► Lack of resources within the authority.
► Lack of aviation policy to support the authority.
► Deficiencies in the training system.

Investigation

✓ Causes

► Decision to continue approach below MDA without visual contact.
► Performance pressures.
► Airline’s poor safety culture.

Investigation

✓ Safety recommendations

► “Tip-of-the-arrow” recommendations.

But

► Review the process of granting AOC.
► Review the training system.
► Define an aviation policy which provides support to the task of the aviation administration.
► ...

ICAO Safety Management Systems (SMS) Course
Module N° 2 – Basic safety concepts
Investigation

... But

- Reform aviation legislation.
- Reinforce existing legislation as interim measure.
- Improve both accident investigation and aircraft and airways inspection processes.

Errors ...

... are like mosquitoes ...

To fight them ...

... drain their breeding swamps.

Questions and answers

Basic safety concepts
Questions and answers

- **Q**: How is safety defined in document 9859?
- **A**: Safety is the state in which the risk of harm to persons or property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management.

Slide number: 7

Questions and answers

- **Q**: Enumerate the five building blocks of the organizational accident.
- **A**:

Slide number: 16

Questions and answers

- **Q**: Explain the components of the SHEL(L) Model.
- **A**: Software, Hardware, Environment, Liveware, Liveware, other persons

Slide number: 20

Questions and answers

- **Q**: Enumerate three basic traits underlying effective safety reporting.
- **A**: Information, People are knowledgeable about the human, technical and organizational factors that determine the safety of the system as a whole.
 - Flexibility, People can adapt reporting when facing unusual circumstances, shifting from the established mode to a direct mode if allowing information to quickly reach the appropriate decision-making level.
 - Learning, People have the competence to draw conclusions from safety information systems and the will to implement major reforms.

Slide number: 35
Questions and answers

Q: How can organizations be characterized, depending upon their management of safety information?

A:
- **Pathological** – Hide the information
- **Bureaucratic** – Restrain the information
- **Generative** – Value the information

Points to remember

1. The organizational accident.
2. Operational contexts and human performance
3. Errors and violations.
4. Organizational culture and effective safety reporting.
5. The management of safety information.

The Anytown City Airport accident

- In the late hours of a summer Friday evening, while landing on a runway heavily contaminated with water, a twin-engine jet transport aircraft with four crew members and 65 passengers on board overran the westerly end of the runway at Anytown City airport.
- The aircraft came to rest in the mud a short distance beyond the end of the runway.
- There were no injuries to crew or passengers, and there was no apparent damage to the aircraft as a consequence of the overrun. However, a fire started and subsequently destroyed the aircraft.
Group activity:
- A facilitator will be appointed, who will coordinate the discussion.
- A summary of the discussion will be written on flip charts, and a member of the group will brief on their findings in a plenary session.

Required task:
- Read the text related to the accident of the twin-engined jet transport at Anytown City Airport.
- ...
ICAO Safety Management Systems (SMS) Course
Module N° 2 – Basic safety concepts