

11TH AFRICA REGIONAL CAPSCA MEETING - NAIROBI

Dr. Mkwizu

OUTLINE

Air Travel Seeding Outbreaks

Pitfalls of Screening

Airport Surveillance Mathematical Models

Al Models

Disease	Origin (Year)	Destination
Influenza H1N1	Mexico (2009) [48]	Pandemic [50]
Vibrio cholerae	South Asia (2002, 2008)	Haiti epidemic (2010) [117]
NDM-1 carbapenem-resistant Gram-negative bacteria	India (2009) [84]	Australia, Austria, Belgium, Canada, China, Croatia, Czech Republic, Denmark, France, Germany, Ireland, Italy, Japan, Kuwait, Lebanon, The Netherlands, New Zealand, Norway Oman, Singapore South Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, United Kingdom, USA [85]
mcr-1 colistin-resistant Gram- negative bacteria	China (2014) [118]	Algeria, Argentina, Belgium, Brazil, Cambodia, Canada, China, Denmark, Egypt, France, Germany, Great Britain, Italy, Japan, Laos, Lithunia, Malaysia, The Netherlands, Nigeria, Poland, Portuga, South Africa, Spain, Switzerland, Taiwan, Thailand, Tunisia, USA, Vietnam [87]
Dengue virus	Primarily Southeast Asia (1950s) [55]	Global emergence over the past five decades [55]

(Findlater & Bogoch, 2018)

HOW AIR TRAVEL SEEDS OUTBREAKS WORLDWIDE

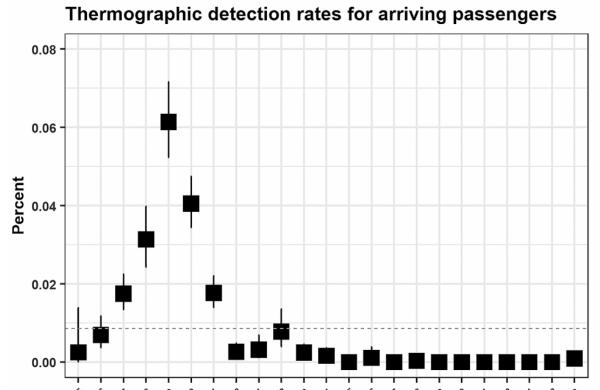
- Air travel has introduced or accelerated major outbreaks worldwide.
- Single travelers have sparked epidemics in distant regions.
- Infections and resistant bacteria spread globally within days via passengers.
- Arboviruses like dengue became globally established through repeated importations.

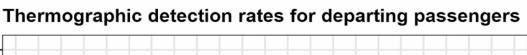
MERS-CoV	Saudi Arabia (2012) [25]	Epidemics in South Korea and Saudi Arabia, with cases detected in Algeria, Austria, China, Egypt, France, Germany, Greece, Iran, Italy, Jordan, Kuwait, Lebanon, The Netherlands, Oman, Philippines, Qatar, Thailand, Tunisia, Turkey, Turkey, United Arab Emirates, United Kingdom, USA, Yemen [119]
Zika virus	Africa and Asia [69]	First detected in Latin America and the Caribbean in 2015 with ongoing transmission in the South Pacific, Latin America and the Caribbean [71]
Chikungunya virus	Asia and Africa [8,12 ⁻¹]	Latin America and the Caribbean in December 2013 with ongoing transmission in this region [120], and autochthonous cases in Europe [60]
SARS-CoV (2002)	Southern China (2002) [22]	Epidemics in Hong Kong, Canada, USA, Vietnam, Singapore, Philippines, and Mongolia [22]
Schistosomiasis	Africa	Epidemic in Corsica (2013), with ongoing transmission [20]

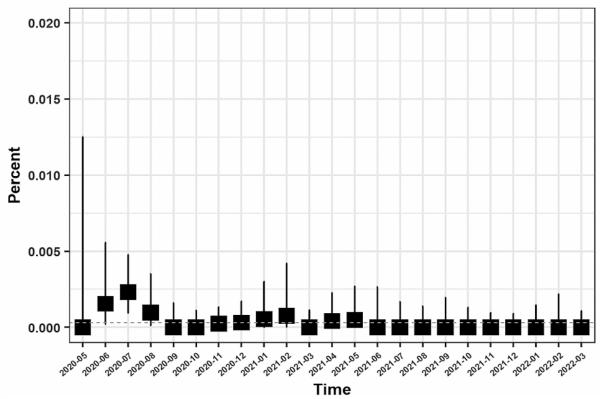
(Findlater & Bogoch, 2018)

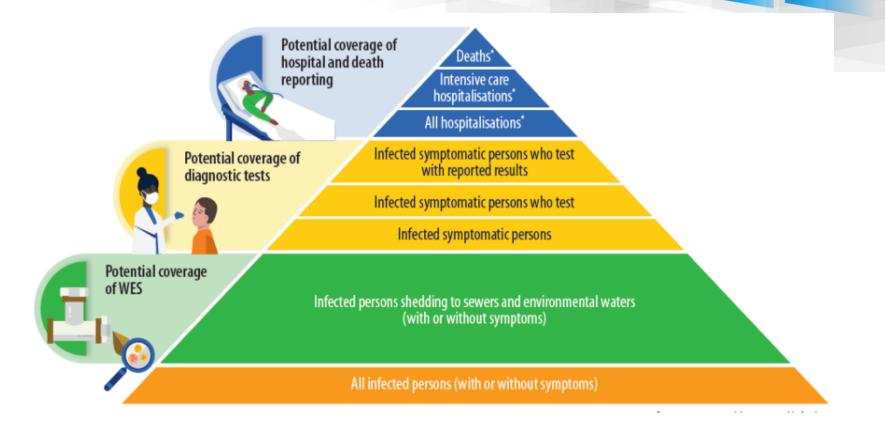
HOW AIR TRAVEL SEEDS OUTBREAKS WORLDWIDE

- Air travel has introduced or accelerated major outbreaks worldwide.
- Single travelers have sparked epidemics in distant regions.
- Infections and resistant bacteria spread globally within days via passengers.
- Arboviruses like dengue became globally established through repeated importations.


MODELLING EVIDENCE ON AIRPORT SCREENING


- Screening misses many cases
- Asymptomatic spread is a major gap
- Continuous
 surveillance needed
- Predictive modelling essential
- Travel restrictions only delay spread


Study	Type of restrictions and setting	Study design	Viral strain involved	Strain transmissibility (R0)	Scenario and duration of intervention	Effect estimate
Quilty et al., 2020 ^[15]	Effectiveness of exit and entry screening for detecting travellers entering Europe with COVID-19 infection	Mathematical stochastic model	SARS-CoV-2	Not reported	Assume 100 infected air travellers who in the absence of screening would arrive at their destination infected Of 100 travellers, how many are likely to:	Effect estimate
					 be detected via exit screening on departure present with severe disease during travel be detected via entry screening on arrival not be detected 	44% (95% CI 33 - 56) 0% (95% CI 0 - 3) 9% (95% CI 2 - 16) 46% (95% CI 36 - 58)
Mandal <i>et al.</i> , 2020 ^[21]	Port-of-entry symptom screening of travellers with clinical features and from COVID-19-affected countries; India	Deterministic model and stochastic models	SARS-CoV-2	R0=1.5 R0=4	Infectiousness of asymptomatic cases relative to symptomatic cases = 0 Infectiousness of asymptomatic cases relative to symptomatic cases = 0.5	Cumulative incidence reduction of COVID-19 infection = 62% Cumulative incidence reduction of COVID-19 infection = 2%
Gostic <i>et al.</i> , 2020 ^[20]	Travel screening (exit screening only, entry screening only or a combination of both)	Probabilistic model	SARS-CoV-2	K0=1.5 - 3.5	Exit screening only (5% subclinical)	Fraction detected = 0.21
					Entry screening only (5% subclinical) Combination of exit and entry screening (5% subclinical)	Fraction detected = 0.27 Fraction detected = 0.34
Chinazzi <i>et al.</i> , 2020 ^[22]	Domestic and international travel restrictions from China	Individual- based stochastic and spatial epidemiological	SARS-CoV-2	R0=2.4	Local travel quarantine within China	Local epidemic in China: travel quarantine reduces the overall epidemic progression by only 3 - 5 days
		models (meta- population approach)		R0=2.4	International travel quarantine	International scale: travel quarantine reduces the number of case importations by 80%



- Thermography detected almost no cases.
- Peaks did not reflect real COVID-19 trends.
- **Departures** showed **near-zero detections**.
- Non-symptom-based surveillance is needed.

(Takayama et al., 2024)

Wastewater
Surveillance
Covers the
Whole
Infection
Pyramid

(ECDC, 2024)

- Wastewater Surveillance (WES) detects all infected people, including asymptomatic and untested.
- Diagnostic tests capture only symptomatic testers.
- Hospital data reflects only severe cases.
- WES provides the broadest coverage and strongest early-warning signal.

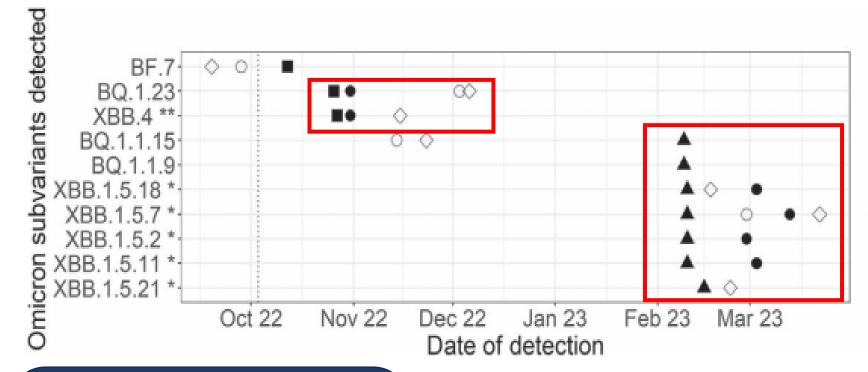
2021					
Milestones	Sep 29-Nov 27	Nov 28-Dec 31	2022	2023	Jan-Aug 2024
Launch	Launched 6-week pilot, demonstratin operational feasibility and detection and genomic sequencing of SARS-CoV-2 m samples from travelers	Expanded pilot for Omicron surge; identified Omicron subvariants BA.2 and BA.3 six weeks before those varians were reported globally (2)	Launched airplane wastewater pilot at JFK (5); demonstrated retroactively that US predeparture test requirement during COVID-19 pandemic reduced postarrival positivity by 50% (8); enhanced surveillance for 2022 FIFA World Cup (9)	in a traveler from Japan	Launched transatlantic airplane wastewater pilot in collaboration with United Kingdom Health Security Agency; enhanced surveillance during Hajj and 2024 Summer Olympics
Airports involved	EWR, JFK T4, SFO	ATL, EWR, JFK T4, SFO	ATL, EWR, IAD, JFK T4, SFO	ATL, BOS, EWR, IAD, JFK T4, JFK T8, LAX, SEA, SFO	BOS, EWR, IAD, JFK T4, JFK T8, LAX, MIA, SEA, SFO
Modalities	Nasal sampling in airport; at-home saliva sampling with questionnaire	Nasal sampling in airport; at-home saliva sampling with questionnaire	Nasal sampling in airport and traveler questionnaire; discontinued at- home saliva sampling; airplane wastewater sampling	Nasal sampling in airport and traveler questionnaire; airplane wastewater sampling; airport triturator;‡ air monitoring	Nasal sampling in airport and traveler questionnaire; airplane wastewater sampling; airport triturator; air monitoring
Median (range) participants per week§	535 (19–1395)	1,434 (1,334–1,746)	1,217 (325–3,490)	6,320 (1,689–9,321)	7,249 (4,366–12,628)
Median (range) traveler countries of origin per week§	1	6	43 (6–87)	123 (56–138)	143 (116–161)
Wastewater samples collected	0	0	89	417	783
Air samples	U	U	U	90	430
collected	DT DOD	DT DODli	DT DOD	DT DOD 4DT DOD	DT DOD 4DT DOD
Laboratory methods used	RT-PCR, amplicon-based sequencing	RT-PCR, amplicon- based sequencing	RT-PCR, amplicon- based sequencing, target enrichment sequencing	RT-PCR, dRT-PCR, amplicon-based sequencing, target enrichment sequencing	RT-PCR, dRT-PCR, amplicon-based sequencing, target enrichment sequencing
Pathogen targets	SARS-CoV-2	SARS-CoV-2	SARS-CoV-2, influenza A and B pilot	SARS-CoV-2, influenza A and B, RSV testing of nasal samples, air, and wastewater; Mycoplasma pneumoniae testing of nasal samples in response to global outbreak reports; mpox testing of airplane and triturator‡ wastewater	Expanded multipathogen enrichment sequencing panel for up to 66 viruses deployed for wastewater samples

EVOLUTION OF AIRPORT- BASED SURVEILLANCE

- Early variant detection is achievable
- Combine nasal, wastewater, and air sampling for stronger surveillance
- Wastewater offers a fast, lowcost early-warning signal
- Multi-pathogen testing improves future outbreak preparedness

(Friedman et al., 2025)

	Start Date:	Mid-Haul Flights (n=7) 8 Jan	Long-Haul Flights (n=5) 6 Feb	Airport Terminal (n=12) 9 Jan
	End Date:	23 Jan	23 Feb	23 Feb
	Coronavirus 229E			5 (42%)
	Coronavirus HKU1			6 (50%)
	Coronavirus NL63	1 (14%)		3 (25%)
	Coronavirus OC43			8 (67%)
_	Human Metapneumovirus			
101	Human Rhinovirus/Enterovirus	2 (29%)	3 (60%)	10 (83%)
Respiratory	Influenza A	1 (14%)		7 (58%)
Ses	Influenza B			2 (17%)
L	Parainfluenza 1			1 (8%)
	Parainfluenza 2			1 (8%)
	Parainfluenza 3		1 (20%)	7 (58%)
	Parainfluenza 4			2 (17%)
Ŋ	RSV	1 (14%)	1 (20%)	
	Norovirus (GII)	6 (86%)	2 (40%)	12 (100%)
Enteric	Aichivirus	2 (29%)	1 (20%)	11 (92%)
	Adenovirus	4 (57%)	2 (40%)	11 (92%)
	Hepatitis A Virus	1 (14%)		

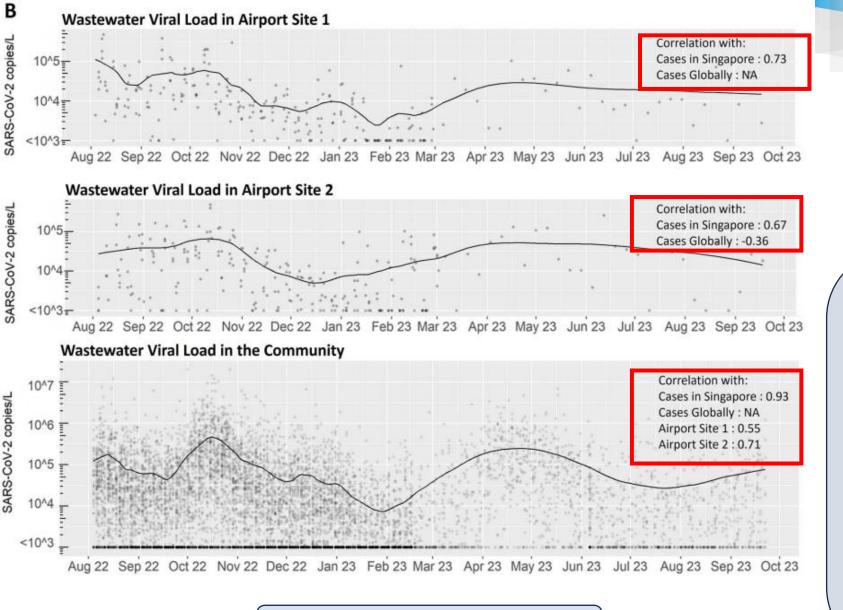

(Tay et al., 2024)

AIRPORT WASTEWATER

- Airport wastewater had more pathogens due to mixed sewage.
- Aircraft wastewater still detected key viruses, **especially on long flights.**
- Enteric viruses were the most common.
- Wastewater works for multi-pathogen surveillance.
- It provides **early warning for** infectious diseases.

Location of first report

- Airport Wastewater
- Aircraft Wastewater
- Water Reclamation Plant
- Imported Clinical Case
- Community Clinical Case


EARLY DETECTION OF VARIANTS THROUGH AIRCRAFT WASTEWATER

(Tay et al., 2024)

- Aircraft wastewater detected variants earliest.
- Airport wastewater gave some early signals.
- Clinical cases appeared weeks later.
- Wastewater—especially aircraft sampling—is a strong early warning tool.

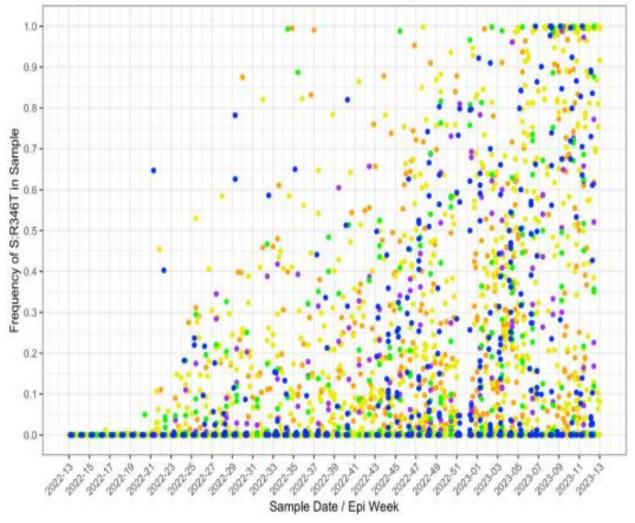
(Tay et al., 2024)

AIRPORT WASTEWATER MIRRORS AND PREDICTS LOCAL COVID-19 TRENDS

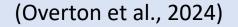
- Airport wastewater closely matches national COVID-19 trends.
- Community wastewater aligns the strongest with national cases.
- No link with global cases—airport signals reflect local transmission.

Detection Threshold ---- Freg >= 0.01

AIRPORT WASTEWATER = EARLY WARNING


- Wastewater at airports
 detected variants 2-10 weeks
 before clinical identification.
- Early signals were visible at <1% frequency, proving high sensitivity.
- Aircraft sewage indicated initial importation events.

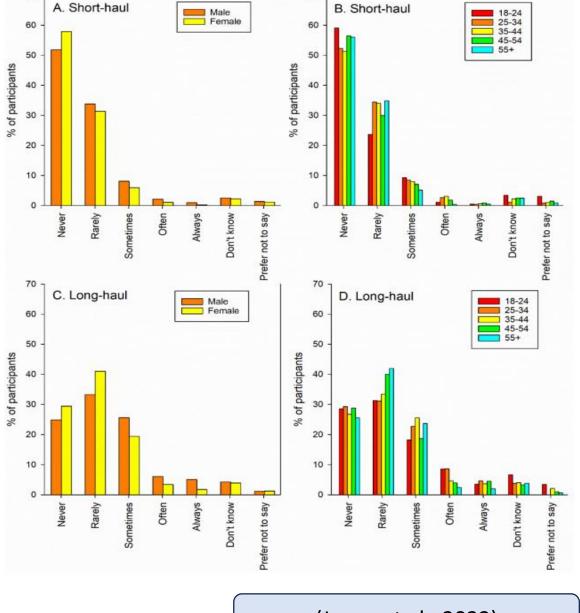
(Overton et al., 2024)



Emergence of S:R346T mutation in Airport and surrounding municipal sites

AIRPORT WASTEWATER = EARY WARNING

- Wastewater shows how key mutations emerge and
 - spread across travelers and
 - communities.
- Mutation trends reveal viral evolution and immuneescape pressure.
- Airport and municipal wastewater together show how viruses change over time.


Location

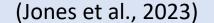
Airport Terminal 1 and 3

Pooled Aircraft Sewage

(Jones et al., 2023)

Passenger Toilet Use on Short- and Long-Haul Flights

- Short-haul flights: Very low toilet use → weak wastewater signals.
- Long-haul flights: Higher toilet use → better detection potential.
- Younger passengers & males use toilets more frequently.



70 A. Prior to departure B. Prior to departure 60 25-34 Female 50 % of participants % of participants 20 10 10 Prefer not to say C. Upon arrival D. Upon arrival 60 50 50 % of participants % of participants 40 20 20 10 10

Toilet Use Before Departure and Upon Arrival

- Most passengers defecate before departure, giving strong wastewater signals.
- Very few defecate after arrival, so arrival wastewater is weak.
- Younger passengers and males are more likely to use toilets pre-departure.

Traveler &
Routebased Risk
Differences

Essential Travelers

Higher positivity (greater infection probability)

Lower total impact due to fewer travelers

Non-Essential Travelers

Lower positivity (screened/tested)

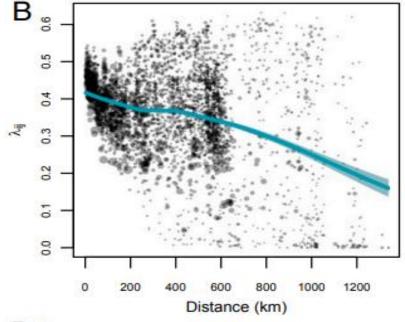
Main Source of imported cases due to high volume

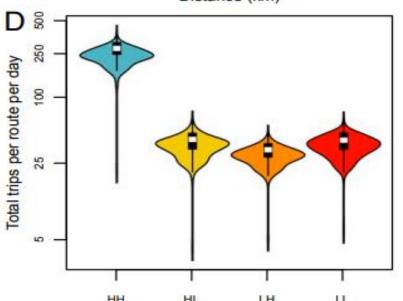
High Volume Routes

Large number of passengers increase total importations

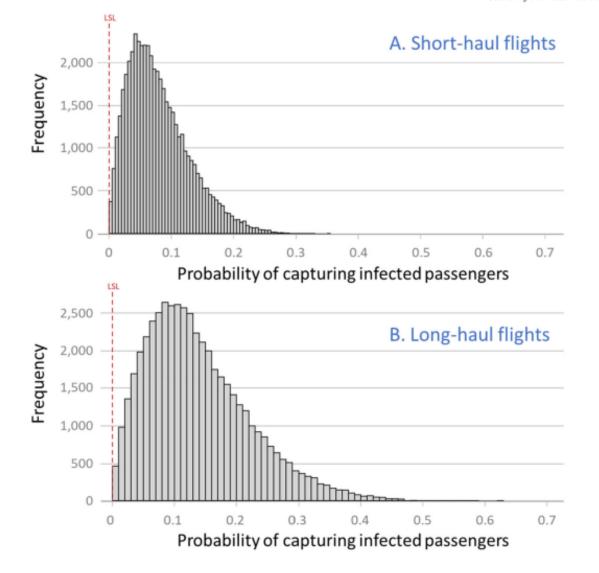
Even low positivity results in high overall risk

High Positivity Routes


Lower volume but higher infection probability

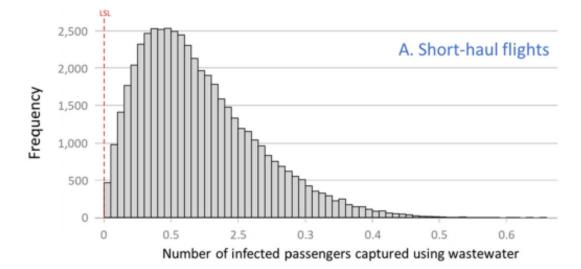

Key for early detection of emerging hotspots

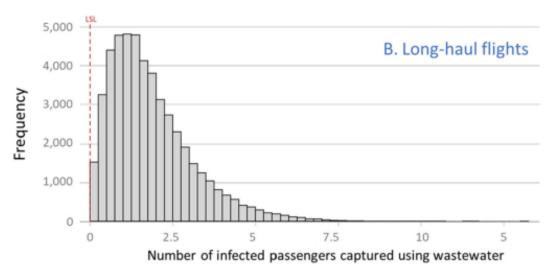
(Milwid et al., 2024)


How Travel Patterns **Drive Disease** Spread

- Long trips mean longer stays and higher transmission risk.
- City-to-city routes have the most travellers and fastest spread.
- Frequent short trips between hubs move diseases quickly.
- Rural routes get few travellers and slower introductions.

(Giles et al., 2020)


(Jones et al., 2023)

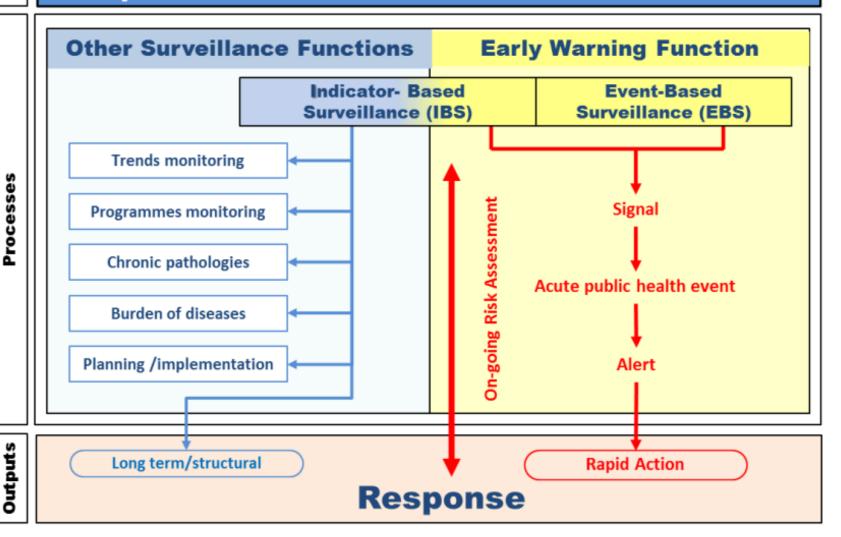

Probability of Detecting Infected Passengers via Wastewater

- Short-haul flights show very low detection rates (~5–10%).
- Long-haul flights perform better, with probabilities around 10–20%.
- Aircraft wastewater
 captures only a fraction of
 infected travelers.

(Jones et al., 2023)

Number of Infected Passengers Captured via Aircraft Wastewater

- Short-haul flights capture very few infected passengers, often below one per flight.
- Long-haul flights capture more cases, usually around 1–2 infected passengers.
- Longer flights increase toilet use, giving stronger wastewater signals.



Inputs

Main sources of information for surveillance

Disease specific surveillance 0
Syndromic Surveillance 0

IBS-EBS
Framework for
Rapid Public
Health Action

(WHO, 2014)

EARLY WARNING & RESPONSE

EPIDEMIC INTELLIGENCE

IBS

EBS

Process

- Systematic
- Routine/ Regular
- Mainly Passive
- Always same sources

Characteristics of data

- Organised data
- Limited
- Predetermined
- Formal
- Trusted & reliable
- Mainly healthcare based

Process

- Formalised
- Flexible
- Active
- Ad-hoc
- Real time

Characteristics of Information

- Not organised
- Multiple & variable
- Not predefined
- Informal & formal
- Reliability not established
- All hazards

Examples of IBS Sources

- Epidemiological surveillance
- Mandatory notification
- Sentinel surveillance
- Syndromic surveillance

- Registers
- Mortality data
- Laboratory data
- Surveys/research

Examples of EBS Sources

- Media
- There is a second
- Community
- Internet, blogs, social networks
- Informal networks
- Official Websites (MoHs, MoAs)

- Alert Networks
- NGOs
- Private sectors
- Animal health
- Environmental disasters

How IBS and EBS Combine to Form Epidemic Intelligence

(WHO, 2014)

- Artificial intelligence
- · Web-based Genome detective
- Telemedicine and M-health
- loT
- Surveillance system
- Robotics
- DSS
- Mobile phone
- Telemedicine

detection and diagnosis

Protection strategies

- Control infection system
- Artificial intelligence
- Robotic
- IoT
- VID
- GIS
- Telemedicine
- Mobile phone
- Surveillance system

- Online services
- Bioinformatics systems to drug discovery
- Telemedicine
- Virtual reality to treatment side effect of COVID such as mental disorders

Treatment Strategies

management aims

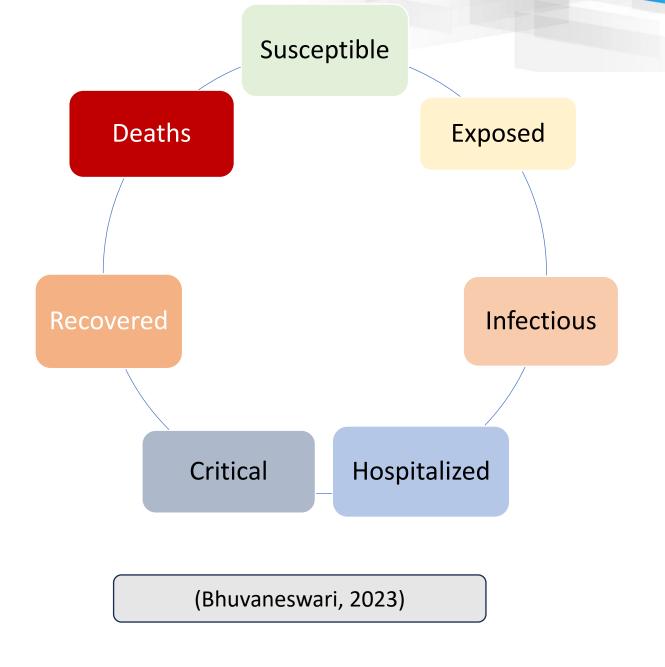
- · Online interactive dashboard
- Smart city
- Artificial intelligence
- VR
- Telemedicine
- Mobile phone
- Surveillance system

Advantages

- Decrease the outbreak
- Increasing the accuracy of diagnosis
- Speed up screening
- Ensure the safety
- Real-time monitoring
- Immediate drug discovery
- Help to decrease worry
- Real-time reporting and access to information
- Help to the management plan
- Save cost
- · Save time
- facilitating to provide severa

services

- · in overcoming further spreading
- Facilitating the communication
- Help to data and information gathering
- Facilitate information sharing
- Help for analyzing, modeling
- Help to forecast aims
- Help for planning by governments, managers, and ...
- Enhancing education and training aims
- Improving communities' literacy about current epidemics
- And etc.


INTEGRATING IT
TOOLS FOR EARLY
DETECTION AND
PANDEMIC
PREPAREDNESS

- Early detection requires smart IT tools
- Real-time data improves outbreak awareness
- Automation strengthens protection
- Digital health expands response capacity
- Dashboards and modelling support early warning

(Asadzadeh et al., 2020)

SEIR – HCD MODEL

- Shows how a disease spreads through a population
- Estimates risk of infected travelers on specific routes
- Supports early warning at airports

Parameters and Data Needed to Run SEIR-HCD Simulations

Disease Specific Parameters

- Transmission Rate
- Incubation infectious rate
- Recovery rate
- Detection rate
- Hospitalization proportion
- Critical illness proportion
- Mortality rate (hospitalized)
- Death rate (critical)

(Bhuvaneswari, 2023)

Air Traffic & Population Inputs

- Passenger Volume per route
- Number of flights per destination
- Infection levels at origin
- Airport catchment population
- Screening/symptom detection
- Traveler health declaration data
- Intervention measures (screening, testing, quarantine)

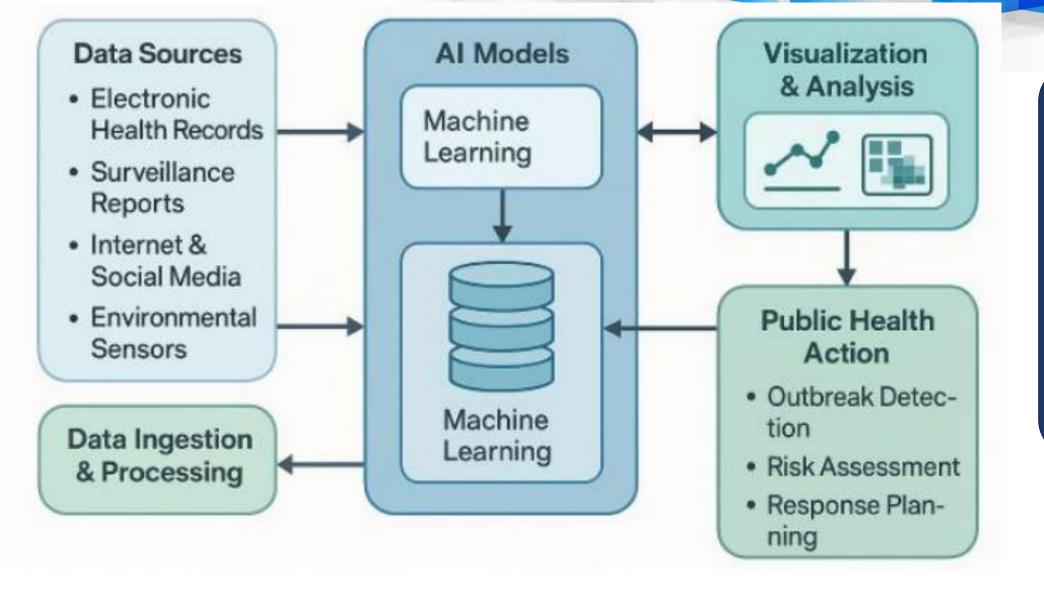
SEIR – HCD MODEL Outputs for Surveillance & Early Warning

Epidemiological Outputs

- Predicted cases
- Peak infection time
- Outbreak duration
- Expected severe and critical cases
- Expected deaths

Risk Forecast Outputs

- Importation probability per route
- Predicted infected travelers
- Passenger infection risk
- Airport vulnerability scores
- Route based risk ranking


Decision Support Outputs

- Recommended interventions
- Early warning Alerts
- Public health response triggers
- Resource allocation forecasts
- Scenario comparisons (with/without intervention)

(Bhuvaneswari, 2023)

How Al
Transforms
Data Into
Early
Outbreak
Alerts

Al **TECHNIQUES SUPPORING EARLY** WARNING **SYSTEMS**

(Villanueva-Miranda, Xiao & Xie, 2025)

Machine Learning (ML)

- SVM
- Random Forest
- Logistic Regression
- XGBoost

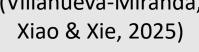
Ensemble Models

 Combines multiple algorithms for better prediction.

Deep Learning (DL)

- LSTM
- CNNs
- Transformer models (e.g., BERT).

Hybrid Systems


 Al + traditional epidemiological or statistical models.

Natural Language Processing (NLP)

- To analyze news, social media, healthcare notes
- Extracts early outbreak signals from digital data

Explainable AI (XAI)

- To make Al decisions transparent to humans
- LIME
- SHAP)
- Attention Visualization

DATA SOURCES

Electronic Health Records

Mobile phone mobility data

Airline ticketing and travel patterns

Social Media and digital platforms

Wearables and biosensors

Sequencing Data

Predictive Models (AI)

AI MODELS

- BlueDot
- HealthMap
- GPHIN
- WHO EIOS

Real time

ACTIONABLE

OUTPUTS

Dashboard and **Automated** Alerts

- Airport Risk Scores
- **Early Warnings**
- Preparedness Triggers
- Flight based risk Alerts
- Cross-border coordination signals

AI ENABLED **EARLY** WARNING **SYSTEM**

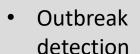
Environmental and Climate data

Climate Driven

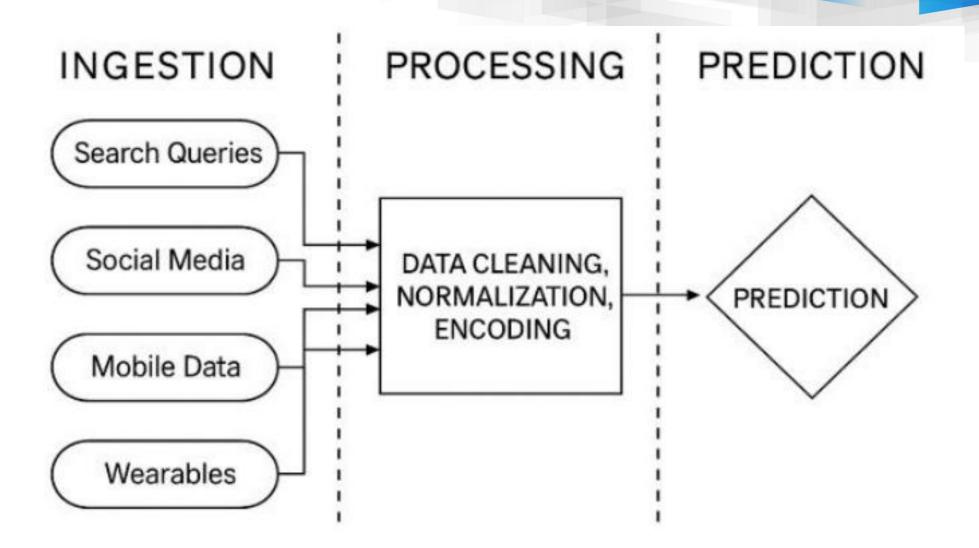
Vector Risk

Wastewater Surveillance

Genomic



Internet Search **Query Data**



- **Risk Prediction**
- Trend Forecasting

How Al
Processes
Digital
Signals to
Predict
Outbreaks

Platform	Notable Outbreak	Detection Speed	Primary Data Sources	Geographic Coverage	Transparency Accessibility
BlueDot	COVID-19 (2019–2020)	Early (9 days before WHO alert)	News reports, airline data, official health sources	Global	Low (proprietary system)
HealthMap	Ebola (2014), Zika, COVID-19	Early (within days of event)	alerts, ProMED, user Global		High (open access platform)
Google Flu Trends	Seasonal Influenza (2008– 2015)	Moderate (real- time updates)	Search engine queries	~25 countries	Low (retired, limited transparency)
ProMED-mail	SARS, MERS, Ebola	Moderate to early (manual curation)	Expert-sourced news, field reports	Global	Moderate (public, moderated content)
EIOS (WHO)	COVID-19, Monkeypox	Early (days before official reports)	Open-source news, official sources, social member states)		Moderate (limited public interface)
SORMAS (Africa CDC)	COVID-19, Lassa fever	Variable (real-time updates within systems)	Case reports, lab data, syndromic inputs Africa (12+ countries)		Moderate (government- deployed, closed)

Al Epidemic Intelligence Platforms Compared

(Okoye, 2025)

Country/Region	Digital Health Data Systems	Workforce Capacity (AI & Data Skills)	Legal & Ethical Governance	AI Integration in Surveillance	Overall Readiness Level
United States Advanced (EHRs, APIs, syndromic systems)		High (academic and government-trained)	Moderate (state- level variability)	Moderate (CDC pilots, academia)	High
Germany	Advanced (national digital health registry)	Moderate (growing AI research base)	llcompliance data ll(predictive		High
India	Moderate (fragmented but improving)	(fragmented Moderate (increased (emerging data Low to Moderate M		Moderate	
Brazil	Moderate (SUS-linked data hubs)		Moderate (legal gaps exist)	Low (limited AI in public surveillance)	Moderate
Kenya	Basic to Moderate (pilot digital tools)	Low (nascent digital health training)	Low (no AI- specific health laws)	Low (few integrated AI systems)	Low
South Korea	Advanced (integrated surveillance-EHR)	High (strong tech sector collaboration)	High (robust digital governance)	High (real-time contact tracing AI)	Very High
Nigeria	Moderate (SORMAS implementation ongoing)	Low to Moderate (Africa CDC support)	Moderate (digital health bill pending)	Low (AI pilots underway)	Moderate
Canada	Advanced (Pan- Canadian Health Data Strategy)	High (strong academic-industry pipeline)	High (data protection frameworks)	Moderate (BlueDot, academic tools)	High

(Okoye, 2025)

Platform	Notable Outbreak	Detection Speed	Primary Data Sources	Geographic Coverage	Transparency Accessibility
BlueDot	COVID-19 (2019–2020)	Early (9 days before WHO alert)	News reports, airline data, official health sources	Global	Low (proprietary system)
HealthMap	Ebola (2014), Zika, COVID-19	Early (within days of event)	alerts, ProMED, user Global		High (open access platform)
Google Flu Trends	Seasonal Influenza (2008– 2015)	Moderate (real- time updates)	Search engine queries	~25 countries	Low (retired, limited transparency)
ProMED-mail	SARS, MERS, Ebola	Moderate to early (manual curation)	Expert-sourced news, field reports	Global	Moderate (public, moderated content)
EIOS (WHO)	COVID-19, Monkeypox	Early (days before official reports)	Open-source news, official sources, social member states)		Moderate (limited public interface)
SORMAS (Africa CDC)	COVID-19, Lassa fever	Variable (real-time updates within systems)	Case reports, lab data, syndromic inputs Africa (12+ countries)		Moderate (government- deployed, closed)

Al Epidemic Intelligence Platforms Compared

(Okoye, 2025)

KEY CHALLENGES & LIMITATIONS OF AI

Data Quality gaps & Missingness

Bias in digital and clinical datasets

Black-box behaviour of Al models

Infrastructure + System connectivity constraints

Privacy, consent & Equity considerations

Need for human oversight to validate alerts

(Villanueva-Miranda, Xiao & Xie, 2025)

