
Airbus contribution to the improvement of Aviation safety and Air Navigation Performance in Africa

Presented by Maury SECK / Airbus Regional Safety Director - International Safety Programs

RWY Excursion remains +CFIT #1 accident category

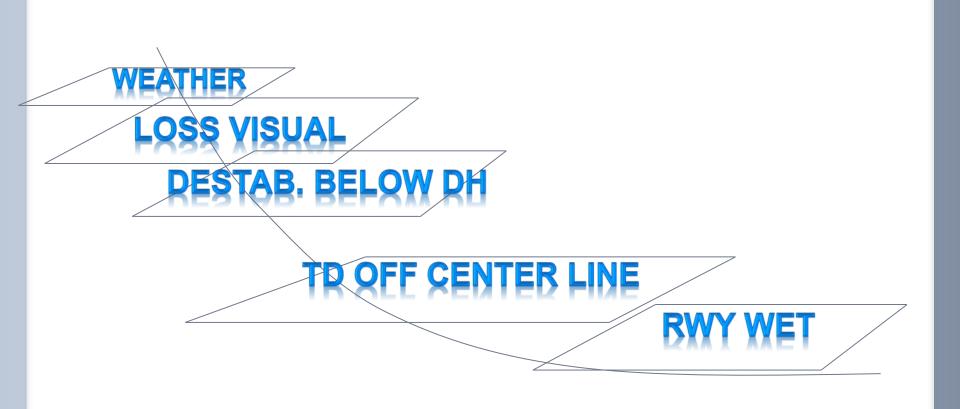
Controlled Flight into Terrain

In most of cases Controlled Flight into Terrain (CFIT) are associated with lack of precision approaches capabilities.

Runway Excursions

Trend for runway excursions remained relatively unchanged. From 2009 to 2013 it represents in average 23% of all accidents over the period. Improving runway Excursion trend is a key priority of Airbus strategy to reduce operational risk.

Source IATA 2013 Safety Report


Contributing Factors Based on Airbus cases analyzed

WEATHER was a contributing factor in 70% of the events

LOSS VISUAL	→	40 %
DESTABILIZATION		40 %
RWY WET		50 %
TR SEE SL		60 %
TD LONG	———	50 %

One Typical Case

Mitigation Means: Training

Be Go Around minded

Go-around can be decided until the selection of the reversers

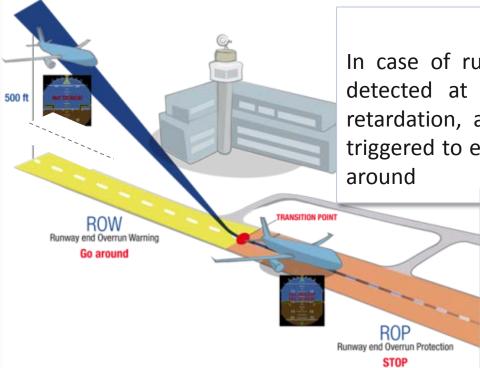
- Reasons for go-around decision could be:
 - Destabilization of the approach
 - Loss of visual references

Once go-around is initiated, it must be completed

Mitigation Means: Flight operations best practices

In Flight Landing Distance Assessment

- Introduction of In-Flight landing distances contributes to reduction of runway excursions
- In-Flight landing distances are EASA approved since mid of July 2012
- From now on, the In-Flight Landing Distances are the Airbus reference to assess in flight the landing performance, with and without failures
 - FCOM PER-LDG-DIS DISPATCH
 - QRH for OLD
- Further reading:
 - Safety First Nº10

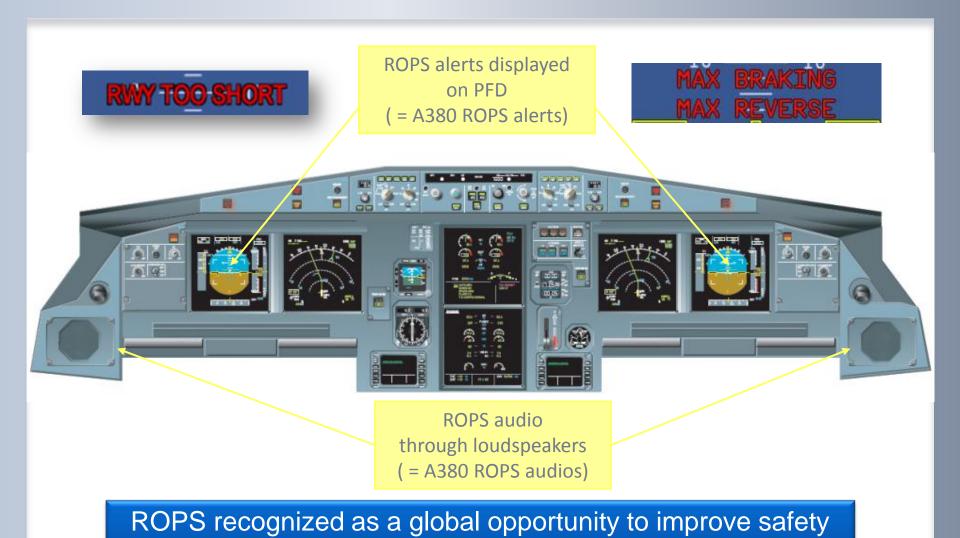

Required Landing Distances (m)								
	way State et (1000 kg)	Dry	Wet	Compacted snow	Slush	Standing Water		
42		1 160	1 330	1 370	1 390	1 430		
46		1 150	1 320	1 380	1 410	1 440		
	50	1 190	1 370	1 440	1 490	1 520		
	54	1 240	1 420	1 510	1 580	1 630		
	58	1 280	1 470	1 570	1 660	1 730		
	62	1 330	1 530	1 640	1 740	1 830		
	66	1 390	1 590	1 710	1 830	1 940		
Corrections on Landing Distances (m)								
Run	way State	Dry	Wet	Compacted snow	Slush	Standing Water		
Altitude	Per 1 000 ft ABOVE SL	+ 50	+ 60	+ 80	+ 130	+ 130		
Speed	Per 5 kt	+ 70	+90	+90	+ 140	+ 170		
Wind	Per 5 kt TW	+ 150	+ 170	+ 160	+ 260	+ 330		
Reverse	Per Thrust Reverser Operative			- 80	- 90	- 100		

Mitigation Means: Aircraft systems

Runway Overrun Prevention System

- Automatic detection of current landing runway using terrain/airport database
- Real time monitoring and assessment of realistic landing and stopping distance with respect to current and remaining landing distance available

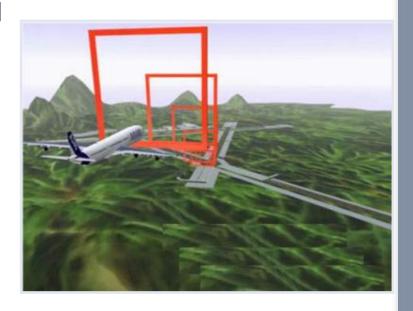
ROW


In case of runway overrun situation detected at landing before aircraft retardation, a dedicated red alert is triggered to encourage the pilot to go around

ROP

In case of runway overrun situation while the aircraft has started to brake, dedicated red alerts to set/keep full pedal braking and to select/keep max reverse thrust

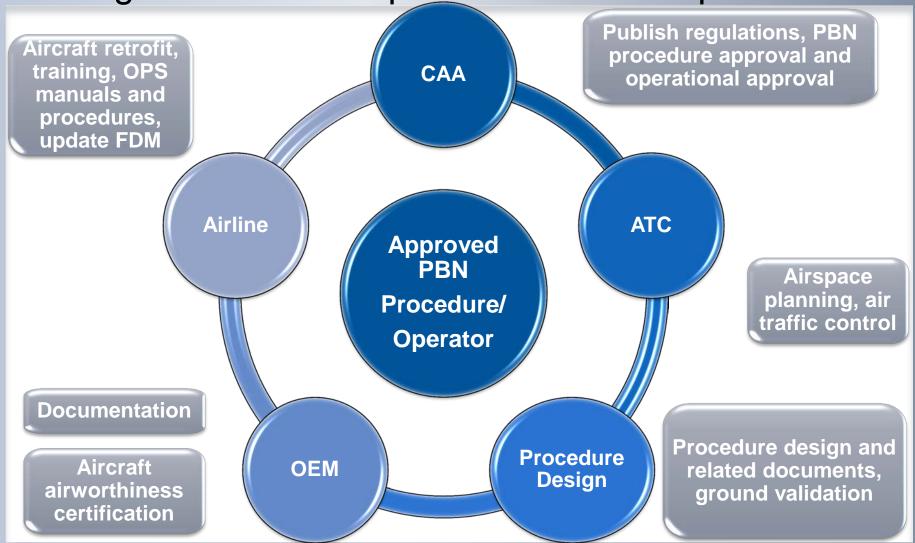
Integration of ROPS in Airbus Cockpit


Solution available for all Airbus FBW aircraft

SAIRBUS

Mitigation Means:PBN support

PBN approaches implementation


- Fully managed trajectories, laterally and vertically
- Stabilized approaches with smooth and constant descent slope
- Alignment with the runway axis
- Reduced crew workload
- Allowing replacement of existing circle to land and visual procedures
- Avoiding tailwinds landings due to avoidance of poorly equipped runways

PBN reduces the risk of un-stabilized approaches and CFIT

Airbus approach: « Train the trainer »
Sharing "know-how" capabilities and best practices

AFI Aviation Safety Symposium

Conclusion

- Airbus actively supports the improvement of Aviation Safety through various initiatives:
 - ✓ Continuous improvement of aircraft systems and innovation
 - ✓ Airline flight operations and training departments' support for the implementation of best practices
 - ✓ Promotion of a safe and efficient PBN implementation and active support based on Train the Trainer approach and Airbus ProSky expertise
 - ✓ Active support to the ICAO African Flight Procedure Program

