Dealing with Unexpected Events

ICAO LOC-I Symposium
22-24 June 2015, Nairobi
Sunjoo Advani - President, IDT
What is the most common human factor in LOC-I incidents?
Startle
What is Surprise in Aviation?

- Created by Sudden abnormal aircraft behavior
 - wake vortex encounters
 - control surface hard-overs
 - asymmetric thrust
- Or a gradual deviation of the pilot’s mental model
 - (e.g., misinform the pilot via erroneous display information)
Surprise During Training

• Surprise – Startle – Unexpected Stall
• Distract pilots by keeping them busy
 – Create expectations in scenario
 – Distract pilot with workload in line with expectations
 – Aircraft upset is then unexpected

• Realistic environment, realistic (high) workload, realistic distraction, realistic upset scenario

• ➔ Immersion
AF-447 (from BEA Report)
Note - video can be found on YouTube as “AF 447 animation”

ANIMATION

Accident on **June 1st 2009**
to the **Airbus A330-203**
registered **F-GZCP**
operated by **Air France**
flight **AF 447 - Rio de Janeiro - Paris**
Summary of AF 447

- The accident resulted from the following succession of events:
 - Temporary inconsistency between the measured airspeeds led to autopilot disconnection and a reconfiguration to alternate law,
 - Inappropriate control inputs that destabilized the flight path,
 - Crew disconnect between the loss of indicated airspeeds and the appropriate procedure,
 - The PM’s late identification of the deviation in the flight path and insufficient correction by the PF,
 - The crew not identifying the approach to stall, the lack of an immediate reaction on its part and exit from the flight envelope,
 - The crew’s failure to diagnose the stall situation and, consequently, the lack of any actions that would have made recovery possible.
Pilot Mis-perceptions of Overspeed

- Pilots consider in-flight overspeeds a serious risk.
- Origins:
 - Flight theory training
 - dangers of shock stall = low-speed stall
 - onset flutter or Mach tuck >>>> Only on older aircraft
 - VMO/MMO corresponds to a critical limit; excursions not demonstrated during training
 - VMO/MMO excursions are severe, requiring maintenance inspection
 - Certification criteria state that overspeeds should be indicated by a red ECAM MSG, with alarm
Realities of Overspeed

• Modern supercritical airfoils have improved high-speed performance
 – position of aerodynamic centre is virtually stable
 – drag increase is so great that it’s extremely unlikely (impossible) to fly faster and enter flutter
 – FBW and load-factor limitations prevent structural damage
Risk of Low Speed

- Loss of control
- **Aerodynamic stall**
- However, not all aircraft demonstrate the same characteristics, even from day-to-day
BEA Recommendations (AF 447)

• specific and regular exercises dedicated to manual aircraft handling of approach to stall and stall recovery, including at high altitude.

• to make sure, through practical exercises, that the theoretical knowledge, particularly on flight mechanics, is well understood.

• define criteria for selection and recurrent training among instructors that would allow a high and standardized level of instruction to be reached.

• training scenarios of the effects of surprise in order to train pilots to face these phenomena.
Subtle Unexpected Events
Automation Dependency–Ensuring Robust Performance in Unexpected Situations

Sunjoo Advani, IDT
Man4Gen

GOAL: to identify the causality behind incidents and accidents which required manual operations. Recommend short-term changes to procedures, training, flight-deck technology in order to reaffirm proper manual operations.

Achieved through:

- Analysis of relevant accidents and incidents related to manual skills
- Analysis of unexpected and challenging situations
- Understanding breakdown of situation awareness
- Developing and performing experiments related to unexpected events
- Analyzing system monitoring, decision-making and manual control
- Development of recommendations for training, procedures and system design
Man4Gen

European FP7 2012 Aeronautics and Air Transport programme.

Man4Gen consortium partners:
• NLR (coordinator, the Netherlands)
• DLR (Germany)
• IDT (the Netherlands)
• Linköping University (Sweden)
• Boeing R&T (Spain)
• University of Vienna (Austria)
• Medical University of Vienna (Austria)
• Global Training Aviation (Spain)
• Airbus and Airbus Operations (France)

The project started in 2012 and will run until the end of 2015
Flying is Safe

- Air travel is the safest mode of transportation
- Accident rates have subsided to the lowest level
Experiment

Intention: to study decision making and risk assessment in response to unexpected and challenging situations

Experiment scenario elements:
- reversion to manual control,
- unexpected and challenging
- active and authoritative decision making

- Crews were observed for actions, communications and behaviour using the Desirable Flight Crew Performance (DFCP) method and the Airbus Assessment and Grading System.

- B747-400 research flight simulator at NLR in Amsterdam, and
- A320 research simulator at DLR in Braunschweig.

9

Experiment Validation and Concept Procedure

Friday, April 17, 2015
Scenario

1. Initial Approach
2. ILS
3. Go Around
4. Birdstrike
5. Missed Approach & Land/Hold

Experiment Validation and Concept Procedure
Friday, April 17, 2015
Observations

• Crews indeed experienced the events in the scenario as “unexpected events”.

• Crews appeared to have more difficulty than expected with the scenario.

• Some cases leading to unstable approaches and very short final line up distances.

• The decision to land as quickly as possible led to abbreviated procedures and checklists, if run at all.

• Crews failed to perform complete threat assessment and made decisions without considering the impact of these decisions.