

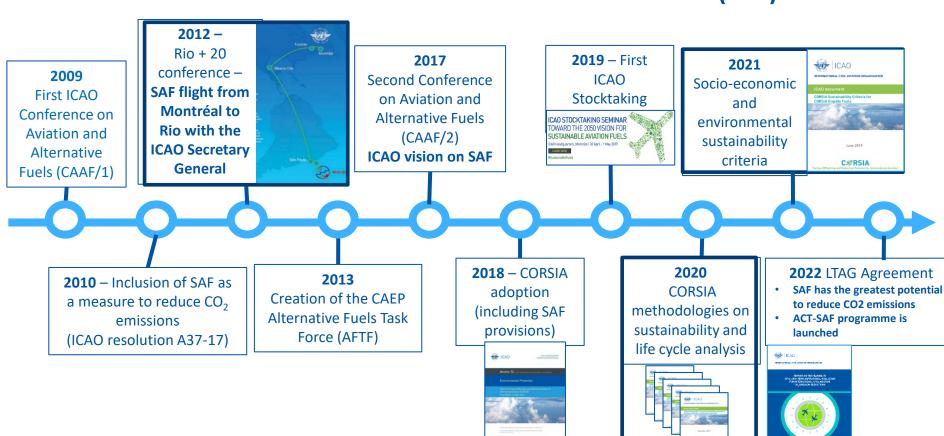
Introduction to SAF

Second Phase of the ICAO Assistance Project with the EU Funding: "Capacity Building for CO₂ Mitigation from International Aviation

3 to 5 April 2023 Harare, Zimbabwe

Bruno Silva Environment Officer, ICAO

- 1) ICAO action on SAF, and SAF benefits
- 2) ICAO policies on SAF
- 3) Definition of SAF, including sustainability criteria and life cycle assessment
- 4) Developments in the SAF market
- 5) Conclusions



ICAO action on SAF, and SAF benefits

ICAO action on Sustainable Aviation Fuels (SAF)

ICAO is facilitating SAF development and deployment by:

- 1) Establishing Policies, measures and goals
- 2) Developing globally-accepted **Standards**, **sustainability criteria**, and **life cycle methodologies for SAF use in CORSIA**.
- 3) fostering **capacity building and assistance** to ICAO Member States, including through the ACT-SAF programme
- 4) Outreaching information and best practices

Benefits of SAF

A SAF industry can provide multiple benefits

socio-economic benefits – sustainable economic growth and employmentenvironmental benefits – contribution to climate action

energy security benefits – diversification of energy matrix increases security

Drop-in nature of SAF makes it interchangeable and compatible with conventional aviation fuels

- SAFs can currently be blended at up to 50% with conventional jet fuel
- SAF is handled in the same way as conventional aviation fuels
- SAF does not require changes in aircraft or its engines, nor in infrastructure

ICAO ENVIRONMENT ICAO Policies on SAF

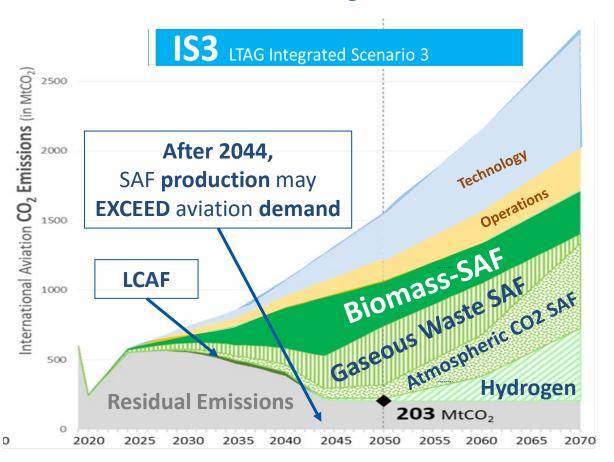
ICAO has international policies applicable to SAF

	CORSIA	2050 ICAO Vision for Sustainable Aviation Fuels	Long term Aspirational goal (LTAG)
•	An aeroplane operator can reduce its CORSIA offsetting requirements through the use of CORSIA Eligible Fuels (CEF)	Calls for a significant proportion of SAF use by 2050, and a level-playing field with other sectors	Largest aviation CO ₂ emissions reductions to come from fuel-related measures
•	Includes international approaches for sustainability and life cycle assessment of fuels	To be reviewed in CAAF/3 (2023)	LTAG agreement (A41-21) includes aspects related to policy planning, regulatory framework, implementation support, and financing

ICAO Long Term Global Aspirational Goal For International Aviation (LTAG)

Adopted by ICAO Assembly Resolution A41-21 (2022)

https://www.icao.int/environmentalprotection/Documents/Assembly/Resolution A41-21 Climate change.pdf



LTAG Report

SAF will play a key role in aviation decarbonization efforts

Financing Needs for SAF and LCAF

2022: 0.15 Billion Liters of SAF being produced

2045: 636 billion liters needed to replace all fossil fuels

By 2050: ca. USD 3,200 billion investment needs

Need for close cooperation with financing institutions

References

https://www.icao.int/environmentalprotection/LTAG/Pages/LTAG-data-spreadsheet.aspx https://www.iata.org/en/iata-repository/pressroom/factsheets/fact-sheet---alternative-fuels/

ICAO 2050 Vision for SAF

adopted at the Second ICAO Conference on Aviation and Alternative Fuels (CAAF/2 - 2017)

- Calls on States, industry and other stakeholders to <u>substitute a significant proportion of</u> <u>conventional aviation fuels with sustainable aviation fuels</u> by 2050.
- 2050 Vision to be revised in 2023 (CAAF/3 Conference)
- Stocktaking process supporting these goals yearly events held since 2019

Definition of SAF And Sustainability Criteria

SAF basic definitions NO COUNTRY LEFT BEHIND

What are Sustainable Aviation Fuels (SAF)?

Which Sustainability Criteria? What is a waste? **Definition** SAF is defined as a renewable Sustainability Criteria are Waste is a feedstock with inelastic supply and defined in the ICAO document no economic value (e.g. municipal solid or waste-derived aviation fuel that meets sustainability "CORSIA Sustainability Criteria waste, used cooking oil, waste gases etc.) reference: ICAO document "CORSIA Methodology For criteria. for CORSIA Eligible Fuels" Calculating Actual Life Cycle Emissions Values" reference: Annex 16 Vol IV - CORSIA

All documents available at https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx

Sustainability

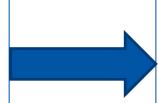
CORSIA sustainability criteria for CORSIA eligible fuels
First global approach to sustainability for an industry sector

Sustainability Themes

- 1. Greenhouse Gases (GHG)
- 2. Carbon stock
- 3. GHG reduction permanence
- 4. Water
- 5. Soil
- 6. Air
- 7. Conservation
- 8. Waste and Chemicals
- 9. Seismic and Vibrational Impacts (Only for LCAF)
- 10. Human and labour rights
- 11. Land use rights and land use
- 12. Water use rights
- 13. Local and social development
- 14. Food security

Carbon-reduction themes (CORSIA pilot phase, 2021-2023)

Latest updates (November/2022)


- Environmental and socioeconomic Themes for Lower Carbon Aviation Fuels (LCAF)
- New Sustainability Theme on GHG permanence
- Applicable after CORSIA pilot phase, from 2024

corsia Sustainability Theme 1 requires lower carbon emissions on a life cycle basis.

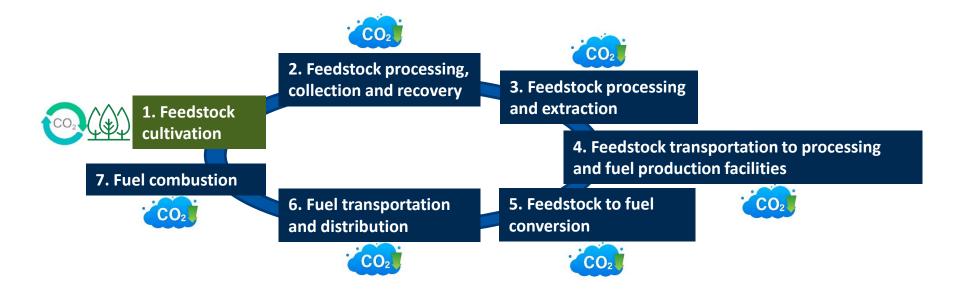
corsia Sustainability Criterion 1.1 requires net greenhouse gas emissions reductions of at least 10% compared to a baseline.

These requirements are met based on a Life cycle assessment of the SAF:

SAF Life cycle emission value (LSf) *Unit – gCO2e/MJ*

Core Life cycle assessment (core LCA value) emissions associated with

all steps of SAF production and use


Induced Land use Change (ILUC value)

Emissions associated with possible land use change generated by SAF feedstock production

Core Life cycle assessment (core LCA value)

Emissions associated with all steps of SAF production and use

Example: life cycle emissions of sugarcane ethanol ATJ in Brazil

Production step	Associated emissions (gCO2e/MJ)
Feedstock growth	-74
Feedstock cultivation Feedstock processing, collection and recovery Feedstock processing and extraction	16.9
Feedstock transportation to processing and fuel production facilities	1.6
Feedstock to fuel conversion	5.2
Fuel transportation and distribution	0.4
fuel combustion on aircraft engine	74
total (core LCA value)	24.1
Induced Land use Change (ILUC value)	8.7
SAF Life cycle emission value (LSf)	32.8

= core LCA + ILUC

63% emission reduction on a life cycle basis

(Compared with Baseline emission value of 89 gCO2e/MJ)

Example: Jatropha-based SAF in India

Production step	Associated emissions (gCO2e/MJ)
Feedstock growth	-74
Feedstock cultivation Feedstock processing, collection and recovery Feedstock processing and extraction	32.7
Feedstock transportation to processing and fuel production facilities	0.8
Feedstock to fuel conversion	12.5
Fuel transportation and distribution	0.4
fuel combustion on aircraft engine	74
total (core LCA value)	46.8
Induced Land use Change (ILUC value) (Meal used as animal feed after detoxification)	-48.1
SAF Life cycle emission value (LSf) = core LCA + ILUC	-1.3

101% emission reduction on a life cycle basis

(Compared with Baseline emission value of 89 gCO2e/MJ)

CORSIA allows two options to obtain the life cycle emissions of SAF

DEFAULT Life Cycle Emissions

ICAO document "CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels"

Default emission values, as a function of the feedstocks and conversion processes.

ACTUAL Life Cycle Emissions

ICAO document "CORSIA Methodology for Calculating Actual Life Cycle Emissions Values"

Allows calculation of specific emissions values to a given SAF or LCAF

First Global Approach to life cycle assessment

Default life cycle emissions values

Table 1. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels produced with the Fischer-Tropsch Fuel Conversion Process

Region	Fuel Feedstock	Pathway Specifications	Core LCA Value	ILUC LCA Value	LS _f (gCO ₂ e/MJ)
Global	Agricultural residues	Residue removal does not necessitate additional nutrient replacement on the primary crop	7.7		7.7
Global	Forestry residues		8.3	0.0	8.3
Global	Municipal solid waste (MSW), 0% non-biogenic carbon (NBC)		5.2		5.2
Global	Municipal solid waste (MSW) (NBC given as a percentage of the non- biogenic carbon content)		NBC*170.5 + 5.2		NBC*170.5 + 5.2
USA	Poplar (short-rotation woody crops)		12.2	-5.2	7.0
Global	Poplar (short-rotation woody crops)		12.2	8.6	20.8
USA	Miscanthus (herbaceous energy crops)		10.4	-32.9	-22.5
EU	Miscanthus (herbaceous energy crops)		10.4	-22.0	-11.6
Global	Miscanthus (herbaceous energy crops)		10.4	-12.6	-2.2

For more details,
please refer to ICAO
document 06 - Default
Life Cycle Emissions June 2022.pdf

Default life cycle emissions values

Table 2. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels produced with the Hydroprocessed Esters and Fatty Acids (HEFA) Fuel Conversion Process

Region	Fuel Feedstock	Pathway Specifications	Core LCA Value	ILUC LCA Value	LS _f (gCO ₂ e/MJ)
Global	Tallow		22.5		22.5
Global	Used cooking oil		13.9		13.9
Global	Palm fatty acid distillate		20.7	0.0	20.7
Global	Corn oil	Oil from dry mill ethanol plant	17.2		17.2
USA	Soybean oil		40.4	24.5	64.9
Brazil	Soybean oil		40.4	27.0	67.4
Global	Soybean oil		40.4	25.8	66.2
EU	Rapeseed oil		47.4	24.1	71.5
Global	Rapeseed oil		47.4	26.0	73.4
Malaysia & Indonesia	Palm oil	At the oil extraction step, at least 85% of the biogas released from the Palm Oil Mill Effluent (POME) treated in anaerobic ponds is captured and oxidized.	37.4	39.1	76.5
Malaysia & Indonesia	Palm oil	At the oil extraction step, less than 85% of the biogas released from the Palm Oil Mill Effluent (POME) treated in anaerobic ponds is captured and oxidized.	60.0	39.1	99.1

For more details,
please refer to ICAO
document 06 - Default
Life Cycle Emissions June 2022.pdf

Actual life cycle emissions values

ICAO Document "CORSIA Methodology for Calculating <u>Actual</u> Life Cycle Emissions Values" allow for the calculation of specific emissions values to a given CORSIA SAF

- Document provides further details on the methodology, such as:
 - Technical report requirements
 - Feedstock categories (wastes, residues, byproducts = zero ILUC),
 - Low land use change risk practices (zero ILUC)
 - Emissions credits

For more details,
please refer to ICAO
document 07 Methodology for
Actual Life Cycle
Emissions - June
2022.pdf

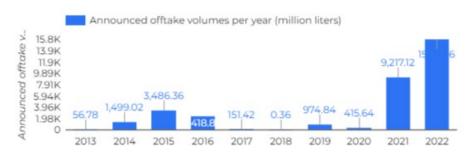
SAF sustainability certification

Sustainability certification

ICAO-approved 'Sustainability Certification Schemes (SCS)' are responsible for

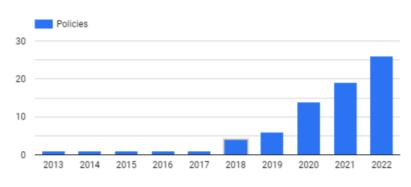
- Ensuring compliance with the sustainability criteria for CORSIA eligible fuels (including CORSIA SAF)
- Ensuring that the life cycle emissions values of the fuel have been applied/calculated correctly
- To date, the International Sustainability and Carbon
 Certification (ISCC) and Roundtable on Sustainable Biomaterials
 (RSB) are the two CORSIA approved SCSs

Developments in the SAF market


Developments in the SAF market - demand

Demand for SAF is growing exponentially

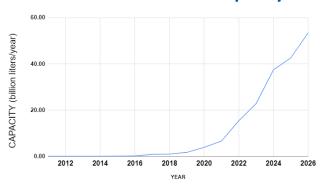
- Airlines signing multi year offtake agreements
- States are implementing supporting policies
- Programmes allow corporates and travelers to purchase SAF


Leading the way together to fly greener Whole was been processed and the first flying flying floored more sustainable ground and the first floored and th

Offtake agreements

Source: https://www.icao.int/environmental-protection/GFAAF/Pages/Offtake-Agreements.aspx

Policies



Developments in the SAF market - supply

SAF production volumes and distribution also growing


Announced Production capacity

ICAO SAF Tracking Tools provide regular updates on SAF market

Airports distributing SAF

Conclusions

- Sustainable Aviation Fuels are a reality technology, sustainability and life cycle methodologies are ready
- Opportunities exist for States in developing this new industry
- Leadership from States will be of paramount importance to drive the CO2 reductions from SAF
- Important to include SAF related opportunities in the State Action Plan
- Challenges remain for further deployment
 - Further policies are needed to drive cost down and increase volumes
 - Level playing field with ground transportation
 - Harmonized approach

