Electric Innovations for Sustainable Aviation

Second Phase of the ICAO Assistance Project with the EU Funding: "Capacity Building for CO₂ Mitigation from International Aviation

Third Meeting 25 to 27 July 2023

Neil Dickson Chief, Environmental Standards, ICAO

ICAO Environmental Goals and 41st Assembly Session

Limit or reduce the impact of aviation emissions on local air quality (LAQ)

Limit or reduce the number of people affected by significant aircraft **noise** Limit or reduce the impact of aviation GHG emissions on global climate

Quantify
Mitigate/Adapt
Implement

Ensure future
resilience of air
transport by adapting
its infrastructure and
operations to the
consequences of
climate change

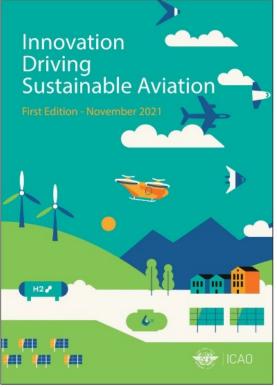
41st ASSEMBLY RESOLUTIONS

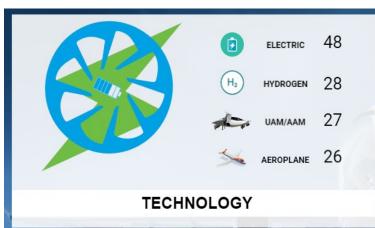
ICAO LTAG Process and Innovations

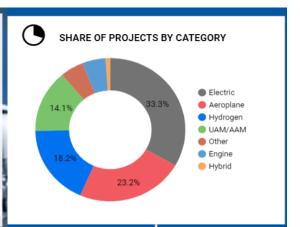
Open, transparent and inclusive:

Innovations:

In-sector focused:




ICAO Basket of CO2 Mitigation Measures


Aircraft technology	First-ever global CO ₂ certification Standard for new types and in- production aeroplanes. Fast-paced innovation (new designs, composite materials, hybrid-electric aircraft, renewable energy sources, etc.).	
Operational improvements	CO ₂ benefits from air traffic management; air navigation; green airports; etc.	(\dag{\dag{\dag{\dag{\dag{\dag{\dag{
Sustainable aviation fuels	Over 315,000 commercial flights with drop-in aviation fuels; 8 conversion processes; 9 airports distributing drop-in aviation fuels	6
Market-based measures	Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)	

ICAO Tracker Tool for Technology

Stocktaking 2022	Stocktaking 2023			
Technology Tracker Entries – 109	Technology Tracker Entries – 129			
• Aeroplane – 21	• Aeroplane – 26			
• Electric – 44	• Electric – 48			
• Hydrogen – 23	• Hydrogen – 28			
• UAM/AAM-21	• UAM/AAM – 27			

Already Certified Electric Aircraft

Beyond zero emissions, the certified noise level achieved by the Pipistrel Velis Electro was 60 dB(A), which is 10 dB(A) lower than the noise level of the Virus SW 121 (same aeroplane but equipped with a conventional combustion engine).

Electric Aviation – Opportunities and Challenges

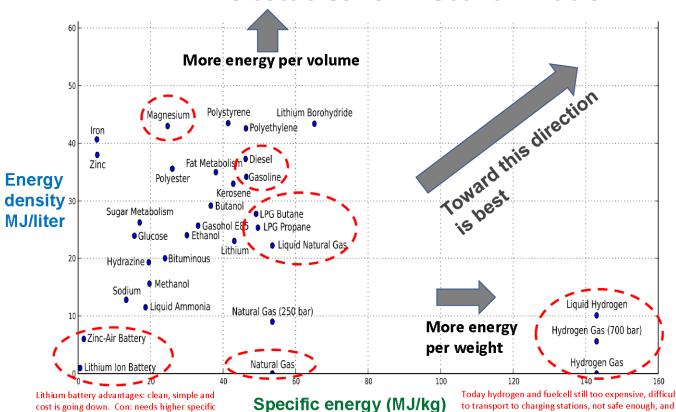
- Long term (>2040)
- Reductions in up to 100%
- Reduction of Local Air Quality pollutants
- Reduced maintenance cost

Availability of clean electrical energy

- Transportation and network
- Storage, battery capacity, lithium availability
- Depend on energy mix
- Applicability very limited by power density
- Infrastructure required

Key energy figure

 Per day, electrification of all flights from YUL would need ~3X the household energy usage of Montreal.



energy, recycleability, and to be less volatile.

Obstacles for Electric Aviation

Reference: Prof. James Wang,
Director of eVTOL Research and
Innovation Centre, Singapore.
Presentation on "What innovations can
we expect from electric VTOL aircraft
in this decade", ICAO Global
Symposium on the Implementation of
Innovation in Aviation, 2020.

does not have the "power density" required for flight.

Electric Aviation – Battery Limitations

NASA - Evolution of Electrified Aircraft Market with Improvements in Battery Technology

Battery Pack Specific

Energy

SOA (150 – 170 Wh/kg)

300 Wh/kg

400 Wh/kg

Sweet spot for eVTOL

500 Wh/kg

> 700 Wh/kg

Potential Missions

Potential Market Introduction

Initial commercial introduction possible for all-electric with limited range and payload, extended capability with hybrid-electric

All-electric eVTOL urban air mobility with 4 passenger and 50+ mile range; 20-passenger allelectric commuter

Desired capability for all-electric eVTOL urban air mobility, long-range all-electric commuter, Initial version of small hybrid-electric regional

Expansion to various classes of hybrid-electric regional aircraft, short-range 150 Passenger, single aisle hybrid-electric aircraft

Single aisle, 150 passenger single-aisle aircraft, long range

ICAO Stocktaking 2020 - Electric Aviation Zeroavia: First Commercial Aircraft on Hydrogen-Electric Propulsion

ICAO Stocktaking 2020 - Electric Aviation

Lilium eVTOL project

- eVTOL aircraft could provide a high-speed regional connectivity with a low environmental footprint;
- The Lilium Jet announced a range of 300km, a top speed of 300km/h and a payload of four passengers, one pilot and carry-on;
- Fully electric, the Lilium Jet is expected to be low noise, high safety and requires minimal infrastructure due to its ability to take-off and land vertically, even in urban environments.

ICAO Stocktaking 2020 - Electric Aviation

MagniX: Middle Mile Small and Regional all-electric propeller aircraft

- Proposing to changing our view of air transportation:
- Connecting communities with smaller airports and smaller aircraft;
- Electric propulsion systems (including motors and power electronics) designed for commercial aircraft;
- 280KW 2MW for multiple sources of electricity.

ICAO Stocktaking 2020 - Electric Aviation

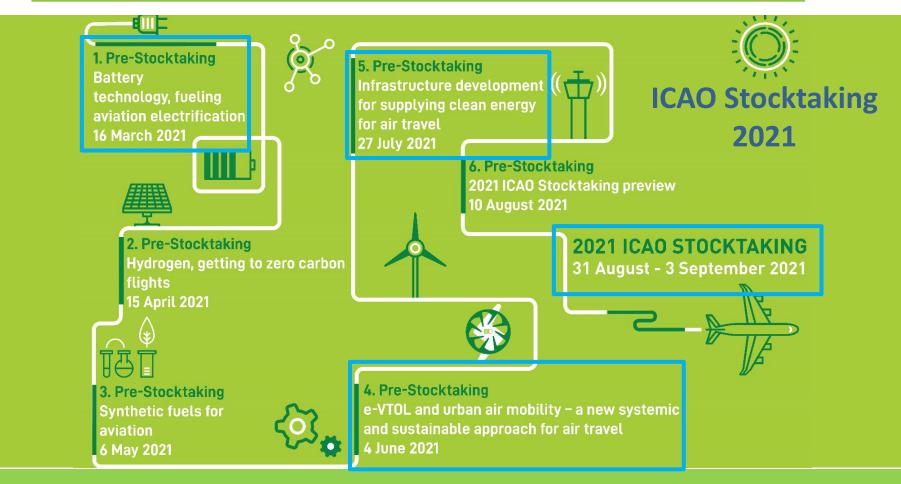
Airlander: novel concept of airships

AIRLANDER'S ROUTE TO ZERO CARBON AVIATION BY 2030

2025

Production Airlander 10

- Hybrid electric using combustion & electric engines, including hydrogen fuel-cell. 9g of CO₂ per passenger/km, up to 90 pax and 750km


90% CO₂ saving

2030

Production Airlander 10
- fully electric using
hydrogen fuel cell only

100% CO₂ saving

ICAO Stocktaking 2021 - Electric Aviation

- Demonstrating the feasibility of electric propulsion: kW and MW class power capability demonstrated for a range of market sectors:
- Urban air mobility
- General aviation
- Commuter
- Regional

eVTOL / UAM

Hybrid electric kW & MW

ICAO Stocktaking 2021 - Electric Aviation, eVTOL

ICAO Stocktaking 2021 - Electric Aviation

Rolls-Royce - Electrification in Aerospace

Urban Air Mobility

Small prop
Commuter
Regional
Narrowbody & small/ medium bizjets

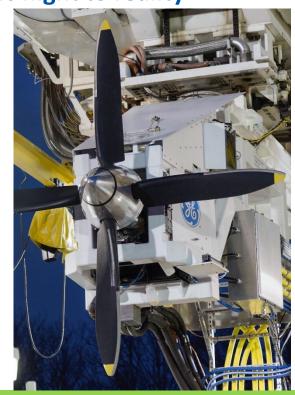

All electric

Hybrid electric

More electric

ICAO Stocktaking 2021 - Electric Aviation

Boeing Electric Aircraft Studies


3%-9% Annual Growth to 1,000 Wh/kg

- Feasibility and EIS/IOC of useful airliner determined by energy storage capability;
- Electric and Hybrid Electric (w/energy storage) yield environmental benefits only if sustainable energy used in charging grid;
- Electric aircraft to date are an order of magnitude smaller and lower power than a regional size airliner.

ICAO Stocktaking 2022 - Electric Aviation GE Aerospace - Bringing hybrid electric flight to reality

GE hybrid electric technology maturation

- 2015-2016: F110 engine power generation
- 2016: First generation electric machine demonstration
- 2017-2018: Power integration system test
- 2019: Second generation electric machine ground and altitude test
- 2020: Third generation power converter ground and altitude test

ICAO Stocktaking 2022 - Electric Aviation

Archer - Advancing the Benefits of Sustainable Air Mobility to Support Aviation Decarbonization

Aircraft & Technology

- Focused on certification of green/clean technologies
- Supply chain partners that share our sustainability objectives

Aircraft Production

Sustainable production methods and facility development

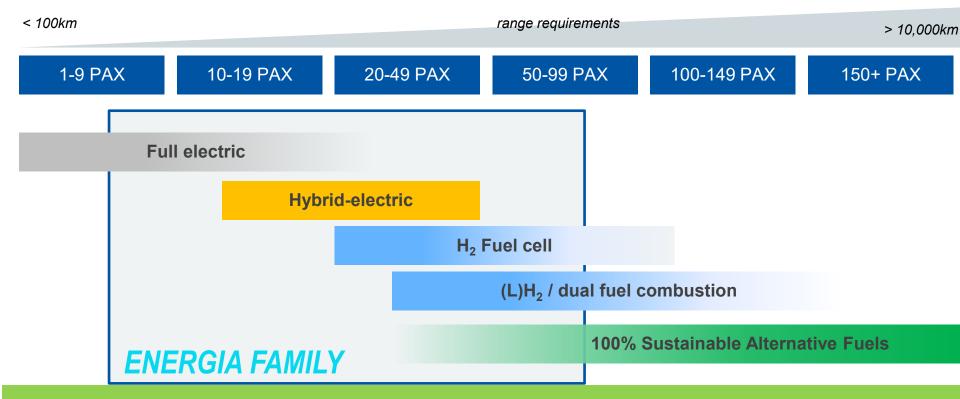
Eco-friendly Vertiports

- Leverage green technologies and materials
- Microgrid designs

Recycle of Batteries from Flight Vehicles

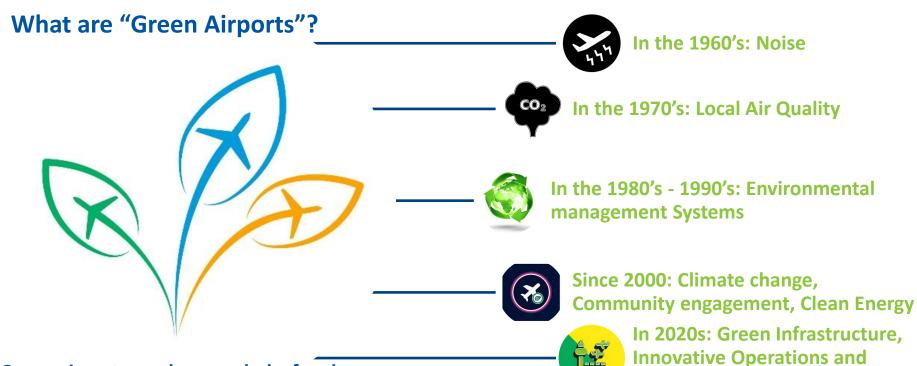
Power storage at vertiports after useful life for aircraft

Charging Infrastructure


Solar/wind energy

ICAO Stocktaking 2022 - Electric Aviation Embraer Sustainability Roadmap

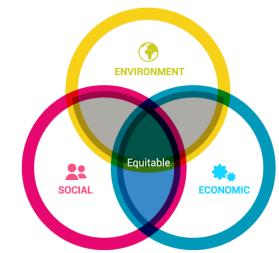



ICAO Stocktaking 2023 - Electric Aviation Zeroavia Near Zero-Emission Aviation Outlook

	Reduction in climate impact			Scalability	Net Impact	Key challenges
	Direct CO2	NOx	Water vapour & contrails			
H2-electric	•	•	C	•	O	Weight of the powertrain; Higher volume fuel tanks required
H2 combustion	•	•	•	•	•	Higher non-CO2 climate impact than fossil fuels; Even higher volume fuel tanks required
Sustainable aviation fuels	•	•	•	•	4	Bio feedstock sustainability; High cost of synthetic fuels Same in-flight emissions
Battery electric	•	•	•	•	•	Weight of battery precludes large aircraft; Frequent replacement
Hybrid-electric	•	•	•	•	•	Small incremental impact (10-20% max) on both economics and climate
	Comprehensive	Moderate	Limited			

ICAO Stocktaking 2023 - Electric Aviation Pratt & Whitney multiple pathways to decarbonize aviation

Electric Aviation and Green Airports


Green airports can become hubs for clean energy, and central to urban air mobility infrastructure

Resilient

Eco-Airport Toolkit e-collection

- 1. Renewable energy at airports
- 2. Airport environmental management systems
- 3. Waste management at airports
- 4. Eco-design of airport buildings
- 5. Climate resilient airports
- 6. Water management at airports
- 7. Air quality management
- 8. Sustainable airport surface access (drafted)

Summary

- Now is the time to design the green sustainable aviation future.
- Small electric aircraft are entering the market, and the eVTOL projects are already performing test flights – electric aviation is growing and enabling reductions in carbon emissions.
- Bigger aircraft concepts are based on hybrid layouts due to the battery technology energy density challenges.
- Airfleet electrification requires green energy sources, infrastructure readiness and clear certification procedures.
- ICAO is working on Standardization Roadmap for the innovative aircraft.
- Global engagement and cooperation is the key and ICAO plays a crucial and leading role.

