

Capacity Building for CO₂ mitigation from international aviation - Fourth Seminar Mombasa, Kenya
12-14 December, 2018

Supporting SIDS and their aviation stakeholders in selecting measures for the State Action Plan

By Neil Dickson, Chief, Environmental Standards Section, ICAO

Background

- A State Action Plan comprises 5 elements:
 - 1. Contact information of the Focal Point
 - 2. Baseline
 - 3. Mitigation Measures
 - 4. Expected Results
 - 5. Assistance needs (if any)
- The selection of Mitigation Measures can be challenging
 - Cost associated?
 - CO₂ abated?
- To facilitate the selection, ICAO has developed a Marginal Abatement Cost (MAC) Curve

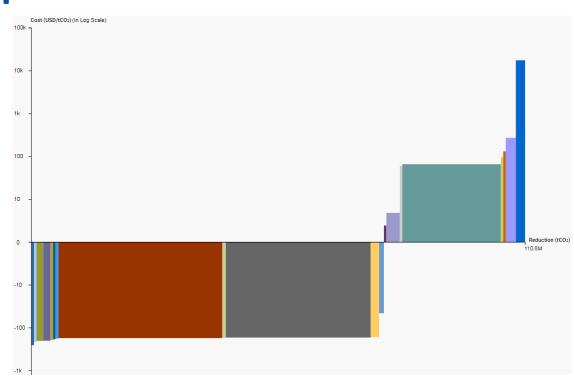
Selection of mitigation measures

Top-down approach Decide upon an environmental objective to be reached from the implementation of measures Identify and prioritize measures Aggregate expected results of measures selected Meets intended objective?

Prioritization of mitigation measures

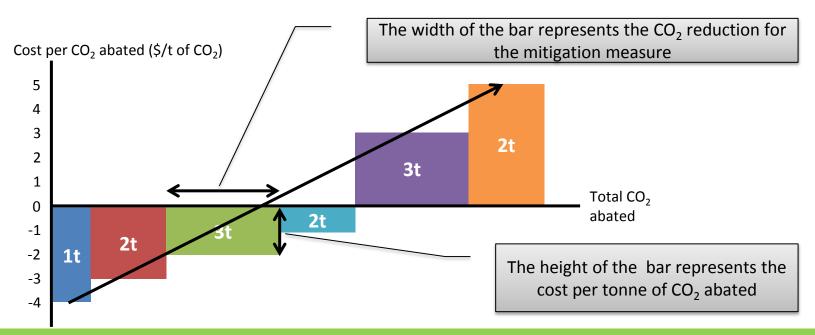
- The prioritization of mitigation measures consists to rank the selected mitigation measures based on criteria, such as
 - Emissions reductions;
 - Economic feasibility;
- Example (for economic feasibility):

Maximize the CO₂ reduction

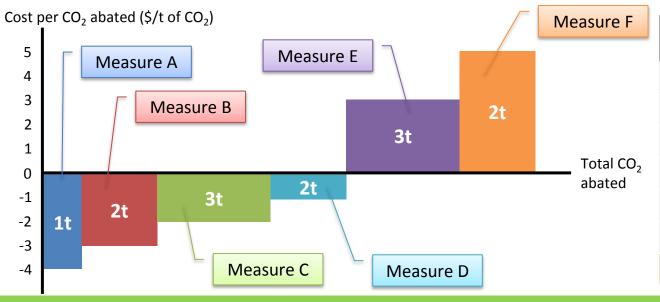


Function and Representation of a MAC curve

Function: A MAC curve helps to select and prioritize mitigation measures.


Representation: ------

How to read a MAC curve?

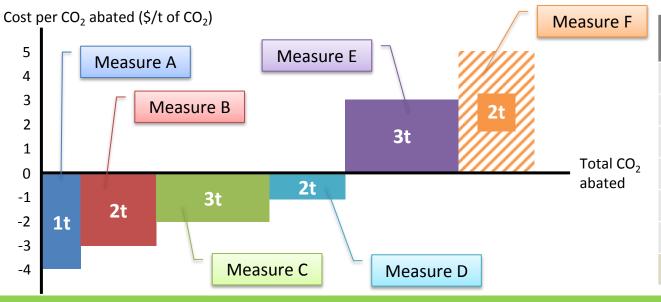


How to use a MAC curve – Example

Scenario

Maximize the CO₂ abated by setting the total cost at 0\$ or lower

#	Cost per tonne (\$/t)	CO ₂ abated (tonne)	Total cost (\$)
Α	-4	1	-4
В	-3	2	-6
С	-2	3	-6
D	-1	2	-2
Ε	3	3	9
F	5	2	10
	Total	13	1



How to use a MAC curve – Example

Scenario

Maximize the CO₂ abated by setting the total cost at 0\$ or lower

#	Cost per tonne (\$/t)	CO ₂ abated (tonne)	Total cost (\$)
Α	-4	1	-4
В	-3	2	-6
С	-2	3	-6
D	-1	2	-2
Ε	3	3	9
F	5	2	10
	Total	13> 11	1> -9

CASE STUDY

Recommendations for

Small Islands Developing States

and

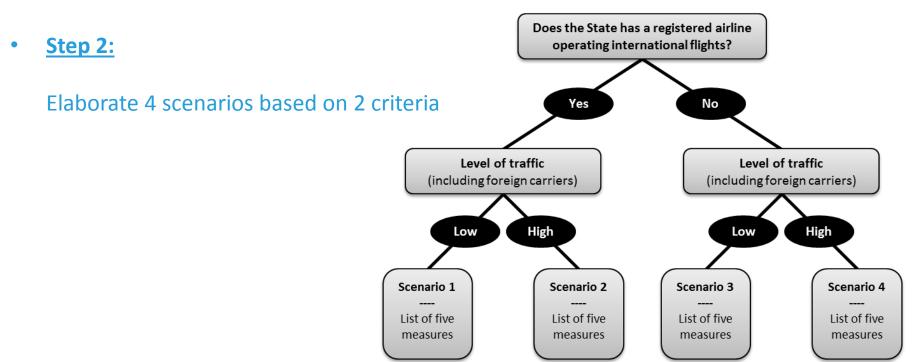
Developing States

Case Study: Parameters

In order to calibrate the model (based on 34 countries), statistics on <u>Airport</u> and <u>Aircraft</u> need to be provided.

- 34 Countries located in Latin
 America/Caribbean and Asia-Pacific:
 - **13** SIDS
 - 21 Developing States
- Airports:
 - Small (<25k arrivals): 45.06%</p>
 - Medium (25k-100k arrivals): 49.59%
 - Large (>100k arrivals): 5.35%

- Aircraft:
 - TP/RJ (Turboprop/Regional Jet): 29.87%
 - NB (Narrow-body): 59.83%
 - WB (Wide-body): 10.30%
- Aircraft age:
 - 0-10 years: 81.09%
 - 10-20 years: 8.20%
 - +20 years: **10.71%**


Step 1:

Set the objective:

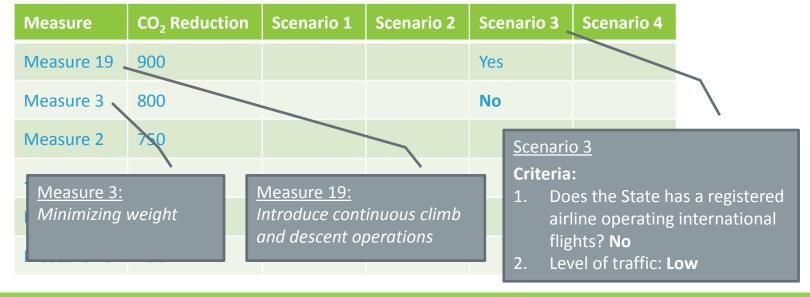
"Get the maximum of CO₂ abated with a maximum cost of 0\$ and with a maximum of 5 mitigation measures"

• **Step 3**:

Select 5 mitigation measures by taking into consideration the 2 criteria for each scenario

Process:

- (a) Sort the 20 mitigation measures from the highest to the lowest potential
 CO₂ abated
- (b) Select the top 5 mitigation measures respecting both criteria
- (c) Sum the cost for the 5 mitigation measures with a limit of 0\$


(a) Sort the 20 mitigation measures from the highest to the lowest potential CO₂ abated

Measure	CO ₂ Reduction
Measure 19	900
Measure 3	800
Measure 2	750
Measure 1	500
Measure 20	100

(b) Select the top 5 mitigation measures respecting both criteria

(c) Sum the cost for the 5 mitigation measures with a limit of 0\$

Measure	CO ₂ Reduction (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
А	10,000	-100	-1,000,000	Yes
В	8,000	-200	-1,600,000	Yes
С	7,000	-500	-3,500,000	No
D	6,000	10,000	60,000,000	Yes
Е	5,000	-500	-2,500,000	Yes
F	4,000	-500	-2,000,000	Yes
G	1,000	1000	1,000,000	Yes
	TOTAL		52,900,000	



(c) Sum the cost for the 5 mitigation measures with a limit of 0\$

Measure	CO ₂ Reduction (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
Α	10,000	-100	-1,000,000	Yes
В	8,000	-200	-1,600,000	Yes
С	7,000	-500	-3,500,000	No
Đ	6,000	10,000	60,000,000	Yes
Е	5,000	-500	-2,500,000	Yes
F	4,000	-500	-2,000,000	Yes
G	1,000	1000	1,000,000	Yes
	TOTAL		-6,100,000	

For the 4 scenario created, a total of 9 different mitigation measures have been highlighted

Installation of fixed electrical ground power and pre-conditioned air to allow APU switch- off Measures to improve collaborative decision making (A-CDM) Measures to increase fuel efficiency of departure and approach procedures Measures to introduce CCO and CDO Improve fuel efficiency through modifications Minimizing weight -254 26,082.11 26,082.11 73,208.66 964,285.04 892,351.94 117,192.07
Measures to increase fuel efficiency of departure and approach procedures Measures to introduce CCO and CDO Improve fuel efficiency through modifications Minimizing weight -46 124,516.26
Measures to introduce CCO and CDO -165 892,351.94 Improve fuel efficiency through modifications -46 117,192.07 Minimizing weight -45 124,516.26
Improve fuel efficiency through modifications -46 117,192.07 Minimizing weight -45 124,516.26
Minimizing weight -45 124,516.26
Airport infrastructure (runways, taxiways, highspeed turnoffs) 65 356,258.60
Use cleaner alternative sources of power generation 131 1,133.23
Development of biofuels 241 87,716.49

Case Study: Results

S1	Does States have a national airline? Level of traffic	Yes Low
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Minimizing weight	
4.	Improve fuel efficiency through modifica	tions
5.	Development of sustainable aviation fue	ls

S2	Does States have a national airline? Level of traffic	Yes High
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Airport infrastructure (runways, taxiways highspeed turnoffs)	5,
4.	Minimizing weight	
5.	Improve fuel efficiency through modifica	tions

Case Study: Results

S3	Does States have a national airline? Level of traffic	No Low
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Development of sustainable aviation fue	ls
4.	Installation of fixed electrical ground pow pre-conditioned air to allow APU switch-	
5.	Use cleaner alternative sources of powe generation	r

S4	Does States have a national airline? Level of traffic	No High
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Airport infrastructure (runways, taxiways highspeed turnoffs)	5,
4.	Development of sustainable aviation fue	ls
5.	Measures to improve collaborative decision making (A-CDM)	ion

Case Study: Conclusion

 The two mitigation measures with the highest potential in term of CO₂ abated are present in the four scenario.

S1	Does States have a national airline? Level of traffic	Yes Low
1.	Measures to increase fuel efficiency of depart approach procedures	ture and
2.	Measures to introduce CCO and CDO	
S3	Does States have a national airline? Level of traffic	No Low
\$3 1.		Low

S2	Does States have a national airline? Level of traffic	Yes High
1.	Measures to increase fuel efficiency of depart approach procedures	rture and
2.	Measures to introduce CCO and CDO	
S4	Does States have a national airline? Level of traffic	No High
1.		High

Case Study: Conclusion

 In the case where the State has no national airlines and with a low level of traffic (scenario 3), the installation of fixed electrical ground power and preconditioned air units augmented by photovoltaic panels represents an excellent opportunity to consider in the case of developing States and SIDS

S 3	Does States have a national airline? Level of traffic	No Low
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Development of biofuels	
4.	Installation of fixed electrical ground power and pre-conditioned air to allow APU switch-off	
5.	Use cleaner alternative sources of power generation	

For more information on this project, please visit ICAO's website:

https://www.icao.int/environmentalprotection/Pages/ICAO_UNDP.aspx

