

ICAO CAPACITY BUILDING SEMINAR ON LOW EMISSIONS AVIATION MEASURES


Supporting SIDS and their aviation stakeholders in selecting measures for the State Action Plan

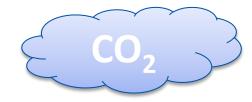
Neil Dickson, Chief, Environmental Standards Section, ICAO

Background

- A State Action Plan comprises 5 elements:
 - 1. Contact information of the Focal Point
 - 2. Baseline
 - 3. Mitigation Measures
 - 4. Expected Results
 - 5. Assistance needs (if any)
- The selection of Mitigation Measures can be challenging
 - Cost associated?
 - CO₂ abated?
- To facilitate the selection, ICAO has developed a Marginal Abatement Cost (MAC) Curve

Selection of mitigation measures

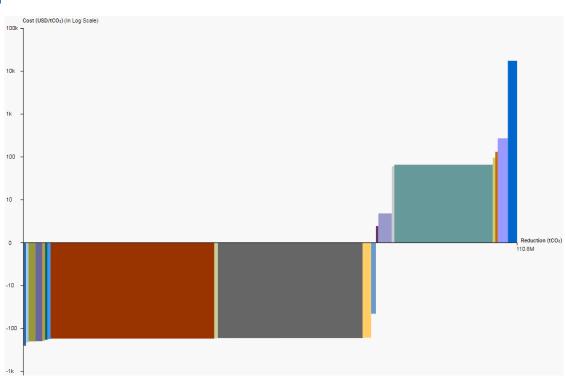
Top-down approach Decide upon an environmental objective to be reached from the implementation of measures Identify and prioritize measures Aggregate expected results of measures selected Meets intended objective?



Prioritization of mitigation measures

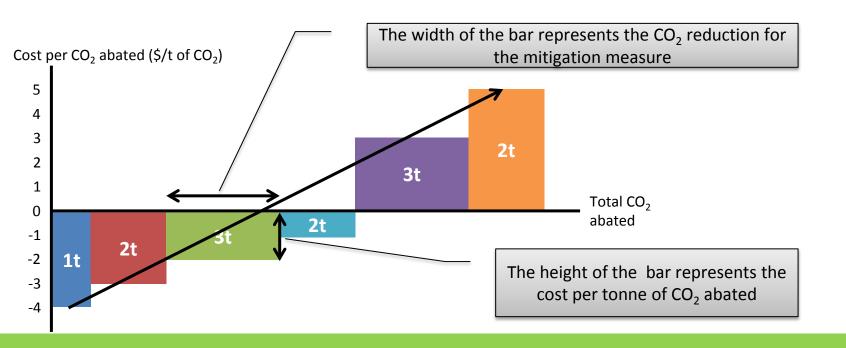
- The prioritization of mitigation measures consists to rank the selected mitigation measures based on criteria, such as
 - Emissions reductions;
 - Economic feasibility;
- Example (for economic feasibility):

Maximize the CO₂ reduction

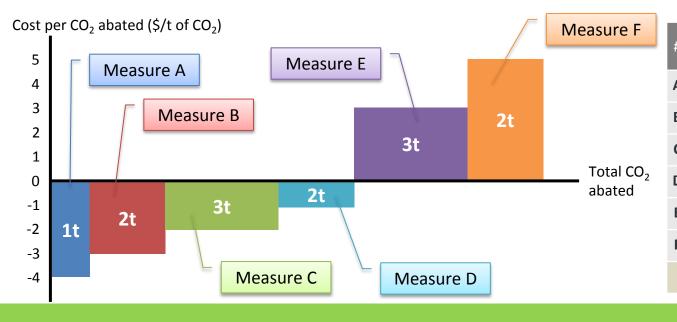


Function and Representation of a MAC curve

Function: A MAC curve helps to select and prioritize mitigation measures.


Representation: ------

How to read a MAC curve?

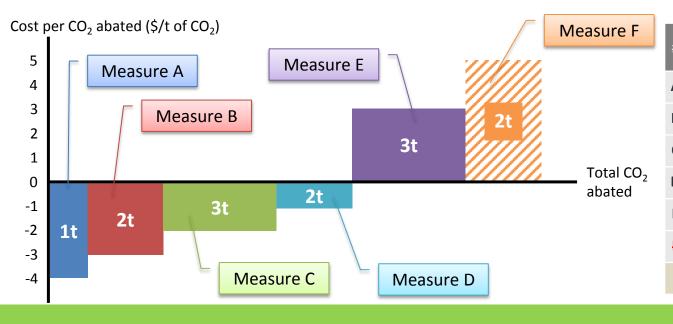


How to use a MAC curve – Example

Scenario

Maximize the CO₂ abated by setting the total cost at 0\$ or lower

#	Cost per tonne (\$/t)	CO ₂ abated (tonne)	Total cost (\$)
Α	-4	1	-4
В	-3	2	-6
С	-2	3	-6
D	-1	2	-2
E	3	3	9
F	5	2	10
	Total	13	1



How to use a MAC curve – Example

Scenario

Maximize the CO₂ abated by setting the total cost at 0\$ or lower

#	Cost per tonne (\$/t)	CO ₂ abated (tonne)	Total cost (\$)
Α	-4	1	-4
В	-3	2	-6
С	-2	3	-6
D	-1	2	-2
Ε	3	3	9
F	5	2	10
	Total	13> 11	1 > -9

CASE STUDY

Recommendations for

Small Islands Developing States

and

Developing States

Case Study: Parameters

In order to calibrate the model (based on 34 countries), statistics on <u>Airport</u> and <u>Aircraft</u> need to be provided.

- 34 Countries located in Latin
 America/Caribbean and Asia-Pacific:
 - **13** SIDS
 - 21 Developing States
- Airports:
 - Small (<25k arrivals): 45.06%</p>
 - Medium (25k-100k arrivals): 49.59%
 - Large (>100k arrivals): 5.35%

- Aircraft:
 - TP/RJ (Turboprop/Regional Jet): 29.87%
 - NB (Narrow-body): **59.83%**
 - WB (Wide-body): 10.30%
- Aircraft age:
 - 0-10 years: 81.09%
 - 10-20 years: 8.20%
 - +20 years: **10.71%**

Case Study: Approach used

• <u>Step 1:</u>

Set the objective:

"Get the maximum of CO₂ abated with a maximum cost of 0\$ and with a maximum of 5 mitigation measures"

Case Study: Approach used

Does the State has a registered airline Step 2: operating international flights? Elaborate 4 scenarios based on 2 criteria Yes Nο Level of traffic Level of traffic (including foreign carriers) (including foreign carriers) High High Low Low Scenario 1 Scenario 2 Scenario 3 Scenario 4 List of five List of five List of five List of five measures measures measures measures

Case Study: Approach used

• <u>Step 3:</u>

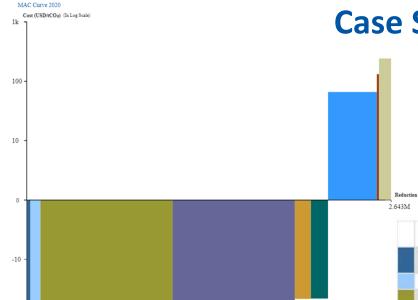
Select 5 mitigation measures by taking into consideration the 2 criteria for each scenario

Process:

- Sort the 20 mitigation measures from the highest to the lowest potential CO₂
 abated
- Select the top 5 mitigation measures respecting both criteria
- Sum the cost for the 5 mitigation measures with a limit of 0\$

Illustrative example:

Measure	CO ₂ Reduction	n (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
Α	10,000		-100	-1,000,000	Yes
В	8,000		-200	-1,600,000	Yes
С	7,000		-500	-3,500,000	No
D	6,000		10,000	60,000,000	Yes
Е	5,000		-500	-2,500,000	Yes
F	4,000	_	-500	-2,000,000	Yes
G	1,000		1000	1,000,000	Yes
	TOTA	AL		52,900,000	



Illustrative example:

Measure	CO ₂ Reduction (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
Α	10,000	-100	-1,000,000	Yes
В	8,000	-200	-1,600,000	Yes
С	7,000	-500	-3,500,000	No
Đ	6,000	10,000	60,000,000	Yes
Е	5,000	-500	-2,500,000	Yes
F	4,000	-500	-2,000,000	Yes
G	1,000	1000	1,000,000	Yes
	TOTAL		-6,100,000	

Case Study: Results

For the 4 scenario created, a total of 9 different mitigation measures have been highlighted

Measure	Cost (USD/tCO ₂)	Reduction (tCO ₂)
Installation of fixed electrical ground power and pre-conditioned air to allow APU switch- off	-254	26,082.11
Measures to improve collaborative decision making (A-CDM)	-226	73,208.66
Measures to increase fuel efficiency of departure and approach procedures	-166	964,285.04
Measures to introduce CCO and CDO	-165	892,351.94
Improve fuel efficiency through modifications	-46	117,192.07
Minimizing weight	-45	124,516.26
Airport infrastructure (runways, taxiways, highspeed turnoffs)	65	356,258.60
Use cleaner alternative sources of power generation	131	1,133.23
Development of biofuels	241	87,716.49

Case Study: Results

S1	Does States have a national airlines? Level of traffic	Yes Low
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Minimizing weight	
4.	Improve fuel efficiency through modifica	itions
5.	Development of sustainable aviation fue	ls

S2	Does States have a national airlines? Yes Level of traffic Hig	h
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Airport infrastructure (runways, taxiways, highspeed turnoffs)	
4.	Minimizing weight	
5.	Improve fuel efficiency through modifications	S

Case Study: Results

S3	Does States have a national airlines? Level of traffic	No Low	
1.	Measures to increase fuel efficiency of departure and approach procedures		
2.	Measures to introduce CCO and CDO		
3.	Development of sustainable aviation fue	ls	
4.	Installation of fixed electrical ground power and pre-conditioned air to allow APU switch-off		
5.	Use cleaner alternative sources of powe generation	r	

S4	Does States have a national airlines? No Level of traffic High
1.	Measures to increase fuel efficiency of departure and approach procedures
2.	Measures to introduce CCO and CDO
3.	Airport infrastructure (runways, taxiways, highspeed turnoffs)
4.	Development of sustainable aviation fuels
5.	Measures to improve collaborative decision making (A-CDM)

Case Study: Conclusion

• The two mitigation measures with the highest potential in term of CO₂ abated are present in the four scenario.

S1	Does States have a national airlines? Level of traffic	Yes Low
1.	Measures to increase fuel efficiency of depart approach procedures	ture and
2.	Measures to introduce CCO and CDO	
S3	Does States have a national airlines? Level of traffic	No Low
S3 1.		Low

S2	Does States have a national airlines? Level of traffic	Yes High
1.	Measures to increase fuel efficiency of departament approach procedures	rture and
2.	Measures to introduce CCO and CDO	
S4	Does States have a national airlines? Level of traffic	No High
1.		High

Case Study: Conclusion

 In the case where the State has no national airlines and with a low level of traffic (scenario 3), the installation of fixed electrical ground power and preconditioned air units augmented by photovoltaic panels represents an excellent opportunity to consider in the case of developing States and SIDS

S3	Does States have a national airlines? Level of traffic	No Low
1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO	
3.	Development of biofuels	
4.	Installation of fixed electrical ground power and pre-conditioned air to allow APL	J switch-off
5.	Use cleaner alternative sources of power generation	

For more information on this project, please visit ICAO's website:

https://www.icao.int/environmentalprotection/Pages/ICAO_UNDP.aspx

