

Implementation of Low Emissions Measures: Sustainable Aviation Fuels

Ofelia Barcena – Assistant Director Member and External Relations

To represent, lead and serve the airline industry

The birth of commercial aviation: 1914

The Aviation Prize

CONNECTING THE WORLD

4 BILLION PASSENGERS 51,000 ROUTES

35% OF WORLD TRADE 54% OF GLOBAL TOURISTS

SUPPORTING GROWTH

62.7 MILLION JOBS \$2.7 TRILLION IN GDP 14 SDGS SUPPORTED

EFFICIENCY GAINED

FUEL EFFICIENCY ↑ 2x SINCE 1990

80% REDUCTION IN CO2

100+ AIRPORTS WITH SOLAR

56m TONNES CO2 SAVED THROUGH WINGLETS SINCE 2000

www.enviro.aero/climatesolutions

A license to grow? GROWTH LICENCE

ROYAL DUTC

This licence permits the growth of aviation in a responsible and sustainable manner, for the benefit of the global economy and citizens around the world. NAME: GLOBAL AVIATION D.O.B: 1-JAN-1914 L#: BZ975160 VALID: 31-DEC-2050 LT: 3, B, Z, ★, ③, ᠀ AUTH: ICAO, YUL

SIG: Wilbur Wright

More than 70 billion passengers have taken a flight in the first 104 years!

A license to grow in LATAM and the Caribbean

Fig. 13. Unconstrained passenger and RPK forecasts

Setting the strategic direction

GOAL 1

PRE-2020 AMBITION

1.5% ANNUAL AVERAGE FUEL EFFICIENCY IMPROVEMENT FROM 2009 TO 2020.

GOAL 2

IN LINE WITH THE NEXT UNFCCC COMMITMENT PERIOD

STABILISE NET AVIATION CO2 EMISSIONS AT 2020 LEVELS WITH CARBON-NEUTRAL GROWTH. **() () () + ()** GOAL 3

ON THE 2°C PATHWAY

REDUCE AVIATION'S NET CO₂ EMISSIONS TO 50% OF WHAT THEY WERE IN 2005, BY 2050.

000

Tackling the climate challenge

A theme of continuous improvement

Aviation has a strong track record on improving efficiency **AVIATION EFFICIENCY IMPROVEMENT** OUTPERFORMS THE WIDER ECONOMY **GLOBAL ECONOMY: 26% IMPROVEMENT** 0.8 CO₂ PER \$ GDP **AVIATION:** NDEX: 1990 = **49% IMPROVEMENT** 0.6 CO₂ PER RTK 0.4 80% SINCE 1990, AVIATION EFFICIENCY IMPROVEMENT HAS IMPROVED AT ALMOST TWICE 0.2 IN AIRCRAFT CO2 THE RATE OF EFFICIENCY IN THE **EMISSIONS PER** WIDER ECONOMY. SEAT SINCE 1950s ATA Economics and World Resources Institute 0 2010 2000 2006 2012 1990 99b

Sustainable Aviation Fuel (SAF) – the facts

- First experimental biofuel flight: January 2008
- Massive testing and certification program (through ASTM)
- Now have 5 'pathways' certified for use...
- → FT-SPK (biomass, forestry residues)
- → FT-SKA (biomass, MSW etc)
- ↗ SIP (sugar to hydrocarbon)
- ↗ AtJ (sugar, starch, wood residues
- ↗ ... and another 15+ in the pipeline...
- ↗ Drop-in specification vital
- ↗ Daily flights from 2016

SAF Facts: Testing and commercial history

- Must be technically certified as fit-for-purpose, just like regular Jet fuel
 (ASTM d1655 / d7566).
- Meets the same technical specifications as conventional jet fuel, in particular resistance to cold and high energy content
- Sustainability criteria is important: IATA AGM Resolution / SAFUG / EU ETS / CORSIA and other
- ↗ All current certifications require some blending with fossil kerosene
- ↗ Over 5 billion liters in SAF off-take agreements

Is sustainability important?

June 2017, Cancun - The International Air Transport Association (IATA) 73rd Annual General Meeting (AGM) approved a resolution calling for governments to implement policies to accelerate the deployment of sustainable aviation fuels (SAF).

The Sustainable Aviation Fuel Users Group

- As defined by **SAFUG**: **Sustainable Aviation Fuels are those that**:
- Meet or exceed technical jet fuel standards
 ASTM D7566
- Have significantly lower carbon emissions over their life cycle compared to fossil fuel sources
- Do not displace food crops or jeopardize drinking water supplies
- Minimize impacts of biodiversity
 - Do not contribute to the clearing or conversion of natural ecosystems and areas of high conservation value
- Have a positive socio-economic impact where feedstocks are grown
 - Support the development of government policies which promote the development, certification and commercial use of sustainable, low carbon aviation fuels

Commitment to sustainability exists

Rapid growth in the number of SAF flights

2018 estimated aviation spend on liquid fuel

\$140 billion

\$0.05 billion

To meet our 2050 goals we need large volumes of SAF

How to make further progress

- Research: continue to develop new sustainable feedstocks and production processes
- Infrastructure: rapid construction (or refurbishment) of production facilities
 Estimated there will be a need for investment of around \$100bn a year on infrastructure
- Policy: incentives for offtake (or de-risking infrastructure) and a level playing field
 Aviation is not yet seen as a potential market everywhere

Diversified energy sources is the future

IATA AVIATION ENVIRONMENT