AIRCRAFT / PAVEMENT CLASSIFICATION RATING ACR / PCR

A NEW ERA IN AIRPORT PAVEMENT ASSET MANAGEMENT

Cyril FABRE

ICAO APEG Rapporteur SME Aerodrome Global Aviation Training Senior Instructeur (OAPSR, APSR)

ACR-PCR

WHICH CHANGES?

- The plain comparison of two numbers (ACR & PCR) will remain the core of the principle of the system: ACR ≤ PCR ⇔ unrestricted operations
- By retaining the same appearance and the simplicity of the current system, the changes would not be as substantial as they might otherwise appear for those who are unfamiliar with airfield pavement
- Only the way of determining the two components will be modified by incorporating a mechanistic-empirical procedure relying on the Linear Elastic Analysis for both flexible and rigid pavements
- This framework allows quantifying the contribution of each aircraft composing a mix to the max. damage produced by the whole traffic, through the Cumulated Damage Factor (CDF) concept

ACR-PCR THE ACR

- The Aircraft Classification Rating (ACR) is a number expressing the relative effect on an aircraft on a pavement for a specified standard subgrade strength
- 4 standard subgrade strength categories are define, common to flexible and rigid pavements

CAT A	CAT B	CAT C	CAT D
E = 200 MPa	E = 120 MPa	E = 80 MPa	E = 50 MPa

- The ACR is numerically defined as twice the Derived Single Wheel Load (DSWL), expressed in hundreds of kilograms
- The DSWL is defined as the single wheel load (with contact pressure of 1.50 MPa), that is equivalent (according to a defined criterion) to the aircraft on a given pavement structure

ACR-PCR

ACR – FLEXIBLE PAVEMENTS

Design the pavement structure for 36,500 aircraft passes (without wander)

P-401/P- 403 HMA	$E = 1379 \mathbf{MPa}$	v = 0.35	$t = 3 in (7.6 cm)^*$ $t = 5 in (12.7 cm)^{**}$	
P-209 Crushed aggregate	E = f(t)	v = 0.35	t	
Subgrade	E = f(A, B, C, D)	$\nu = 0.35$	$t = \infty$	<i>E</i> _z

* For aircraft with MLG ≤ 2 wheels * For aircraft with MLG > 2 wheels

Calculate the DSWL (at 1.5 MPa) that produces the same damage (1.0) on the designed structure

ACR-PCR

ACR – RIGID PAVEMENTS

Design the pavement structure for the aircraft such that the maximum horizontal stress induced at the bottom of the PCC layer is **2.75 MPa** (standard working stress for ACR)

2 Calculate the DSWL (at 1.5 MPa) that produces the maximum horizontal stress (2.75 MPa) on the designed structure

3 ACR = 2 x DSWL (in hundreds of kilograms)

ACR-PCR THE PCR

- The Pavement Classification Rating (PCR) is a number expressing, on the same scale than ACR, the load-carrying capacity of a pavement for unrestricted operations
- The PCR of a pavement should reflect the pavement design with respect to the traffic it is intended to serve
- The PCR procedure should ensure that:
 - If the pavement CDF is equal to or lower than 1.0 (well or over-designed), no aircraft weight restriction should occur
 - If the pavement CDF is higher than 1.0, weight restrictions should apply to one aircraft at least
- A generic PCR computation procedure with several degrees of freedom (e.g. pavement damage model) is proposed

ACR-PCR THE REPORTING FORMAT

- Similarly to the PCN, the PCR represents the pavement bearing strength (on the ACR scale) for <u>unrestricted operations</u>
- A PCR should be determined by the airport operator for all the pavements intended for aircraft of mass greater than 5.7 tons
- The PCR should be published in the Aeronautical Information Publication (AIP) according to the format defined in ICAO Annex 14 (§ 2.6.6)

ACR-PCR GENERIC PCR COMPUTATION PROCEDURE

Traffic data	Ра	vement data
Identify the aircraft with the maximum ACR (at its operating wei	ight) in the traffic AC_{max}	
1 Compute the maximum cumulated pavement damage CDF_{max}	^{<i>i</i>)} for the current traffic	Using subgrade failure model consistent with design parameters
Select the aircraft $AC^{(i)}$ that contributes the most to $CDF_{max}^{(i)}$		
Keeping only $AC^{(i)}$ in the traffic, adjust its number of passes $N^{(i)}$ such that it produces the same pavement damage than the entir) re traffic $CDF_{max}^{(1)}$	Make aircraft equivalent to the entire traffic
5 Keeping only $AC^{(i)}$ in the traffic with the adjusted number of paradjust its weight $W^{(i)}$ such that it produces a pavement damage	sses N ⁽ⁱ⁾ , = 1.0	Make equivalent aircraft compatible with the pavement
$PCR^{(i)} = ACR \text{ of } AC^{(i)} \text{ with operating weight } W^{(i)}$		
$AC^{(l)} \text{ is } AC_{max} ?$		
No	Yes	
Remove $AC^{(i)}$ from the current trafficPC $i = i + 1$	$R = \max_{i} PCR^{(i)}$	

ACR-PCR

PCR DETERMINATION AND PUBLICATION – EXAMPLE 1.1

- A (new) flexible runway is designed according to the French rational design method.
- The subgrade modulus is estimated as: E = 80 MPa ⇒ subgrade category C
- The surface layer is made of asphalt concrete able to withstand the highest tire pressures ⇒ tire pressure category W
- The damage model for the PCR evaluation is the same than used for pavement design (French DGAC-STAC damage model)

EB-BBA2 Wearing course	E = 5500 MPa	$\nu = 0.35$	$t = 6 \ cm$
EB-GB3 Base course	E = 14000 MPa	u = 0.35	<i>t</i> = 13 <i>cm</i>
GNT1 Sub-base	<i>E</i> = 450 <i>MPa</i>	u = 0.35	t = 25 cm
Subgrade	<i>E</i> = 80 <i>MPa</i>	$\nu = 0.35$	$t = \infty$

ACR-PCR PCR DETERMINATION AND PUBLICATION – EXAMPLE 1.2

• Traffic forecasted over the 10-year pavement life

Aircraft	Operating weight (t)	Passes
A319neo	75.9	258 542
A320neo	79.4	232 094
A321neo	97.4	210 424
A330-200	233.9	51 405
A330-300	233.9	19 396
A350-900	268.9	8 971
A380-800	571.0	29 123

• Aircraft wander is considered as per the French rational design method for flexible

runways (Gaussian distribution, σ = 75 cm = 29.53 in)

ACR-PCR

PCR DETERMINATION AND PUBLICATION – EXAMPLE 1.3

	Traffic	Pavement
	Identify aircraft with the highest ACR (at operational weight) in the traffic A	C _{max}
	Calculate the maximum pavement damage $D_{max}^{(i)}$ for the current traffic	
3	Select aircraft $AC^{(i)}$ that contributes the most to $D_{max}^{(i)}$	
4	Keeping only $AC^{(1)}$ in the traffic, adjust its number of passes $N^{(1)}$ so that the pavement damage is the same than the full traffic $D_{max}^{(1)}$	
5	Keeping only $AC^{(t)}$ in the traffic with its adjusted number of passes $N^{(t)}$, adjust its weight $W^{(t)}$ so that the pavement damage is D = 1.0	
Ğ	PCR ^(I) = ACR of aircraft AC ^(I) at adjusted weight W ^(I)	
Ý	AC(i) is aircraft with the highest ACR ACmax ?	
	No Yes	
Remo	we $AC^{(i)}$ from current traffic $PCR = \max_{i} PCR^{(i)}$	
i = i + 1		

ACR-PCR PCR DETERMINATION AND PUBLICATION – EXAMPLE 1.4

• The PCR should be reported as 800 F/C/W/T

- The PCR would have been reported as 590 /F/C/W/T based on the A321neo if only the most contributing aircraft is considered
 - This would have lead to weight restrictions for most of the long-range aircraft, despite the pavement being properly designed for the entire traffic

ACR-PCR PCR DETERMINATION AND PUBLICATION – EXAMPLE 2.1

Pavement structure (Design life = 10 years)

Surface course EB-BBSG3	$E = f(\theta, freq)$	$\nu = 0.35$	$t = 6 \ cm$
Base course EB-GB3	$E = f(\theta, freq)$	$\nu = 0.35$	t = 18 cm
Subbase 1 GNT1	E = 600 MPa	$\nu = 0.35$	$t = 12 \ cm$
Subbase 1 GNT1	E = 240 MPa	$\nu = 0.35$	$t = 25 \ cm$
Subgrade	E = 80 MPa (CAT C)	$\nu = 0.35$	$t = \infty$

Traffic (simplified)

#	Aircraft model	Operating weight (t)	Annual departures	ACR @ operating weight
1	A321-200	93.9	14600	550
2	A350-900	268.9	5475	720
3	A380-800	571.0	1825	650
4	B737-900	79.2	10950	450
5	B787-8	228.4	3650	680
6	B777- 300ER	352.4	4380	780

The 777-300ER is the aircraft with the maximum ACR (AC_{max})

ACR-PCR PCR DETERMINATION AND PUBLICATION – EXAMPLE 2.2

The maximum CDF is $CDF_{max}^{(1)} = 1.153$

3

The 777-300ER is the aircraft contributing the most to $CDF_{max}^{(1)}$

When considered alone, the 4380 annual departures of the 777-300ER produces a CDF of 0.456. The annual departures to produce $CDF_{max}^{(1)}$ are: $N^{(1)} = 4380 \frac{1.153}{0.456} = 11073$

In order to reach a maximum CDF = 1.00, the 777-300ER weight must be reduced from 352.4 t to $W^{(1)} = 341.1 t$

6 $PCR^{(1)} = ACR \text{ of } 777-300ER \text{ at } W^{(1)} = 740 FC$

Since the 777-300ER is AC_{max} , no additional iteration is required

ACR-PCR PCR DETERMINATION AND PUBLICATION – EXAMPLE 2.3

- Using design parameters different of those used for pavement design lead to inconsistent PCR determination.
- From the previous aircraft mix and pavement characteristics, see below examples using different design parameters

Subgrade Failure model	Wheels in tandem (multi- axle wheels)	CDF Max.	PCR	Comment
WÖLHER	Integral form	1,15	740 FCXT	Match design parameters
WÖLHER	TGF (longitudinal P-to-C ratio)	1,81	622 FCXT	Inconsistency
BLEASDALE	Integral form	0,2	900 FCXT	Inconsistency
BLEASDALE	TGF (longitudinal P-to-C retio)	0,55	823 FCXT	Inconsistency

ACR-PCR CONSEQUENCES OF PCR INACCURACIES

Under-estimated PCR (overestimated CDF)

→ Aircraft weight / annual departure restrictions or operations not granted

→ Pavement usage not optimized, **loss of airport revenues**

Over-estimated PCR (underestimated CDF)

- More traffic acceptance (weight/volume) than the pavement is able to withstand over its design life
- → Premature pavement damage, increase of maintenance / repairs COSTS

ACR-PCR OVERLOAD OPERATIONS

- For flexible and rigid pavements, occasional movements by aircraft with ACR not exceeding 10% of the reported PCR should not adversely affect the pavement
- The annual number of overload movements should not exceed approximately 5% of the total annual movements excluding light aircraft
- Overload operations in excess of 10% may be considered on a case by case basis when supported by a detailed technical analysis
- The technical analysis should assess how the overload operations actually contribute to the pavement damage when integrated to the existing traffic, which could be done using the same framework than for the PCR computation

ACR-PCR **OVERLOAD OPERATIONS - EXAMPLE**

- The PCR also provides a damage-based approach for assessing overload operations
- Example: PCR for the previous all-SA traffic (~25 mvts/days) computed as 560 F/C
- Airport wants to assess whether it can accept 1 daily operation of A330-900neo (ACR = 710 **F/C**)
- ACR/PCR overload is significant (> 25%)
- But actual impact on pavement damage is ۲ limited to 5%
- \Rightarrow Airport may allow the overload operations

THE ACR-PCR METHOD

Pav

ACR-PCR BENEFITS OF THE ACR-PCR METHOD

- Overcomes the identified limitations of the current ACN-PCN system and allows a full consideration of the latest evolutions in the field
- Provides several benefits to airport owners
 - Optimized usage of their pavements
 - Improved pavement life predictability
 - Availability of a generic PCR computation procedure
 - Unified soil characterization for both flexible and rigid pavements
- Benefits to airlines and the whole air transport community by allowing optimized operating weights and frequencies without over-conservatism

Cyril FABRE <u>contact@a2pt-consulting.com</u>

www.a2pt-consulting.com