

Day 3: QMS as the Safety Risk Control

Objectives

Recap Day 2

- Surveillance program
- Surveillance techniques
- Audit process

Introduce today's topics...

Surveillance Program Review

A surveillance program should:

- Be continual or on-going
- Be thorough
- Define State and AIS roles and responsibilities
- Include resolutions

Surveillance Techniques Review

Common techniques include:

- Investigations
- Inspections
- Audits
- Assessments
- Continuous monitoring

Surveillance Techniques Review (continued)

Investigate
Cause(s) of a single safety occurrence

Inspect
Compliance with a specific standard(s) at a single facility

(or small group of facilities)

Audit/Assessment/Continuous Monitoring
Systemic evaluation of compliance to requirements

300

1000

Source: Heinrich's Triangle

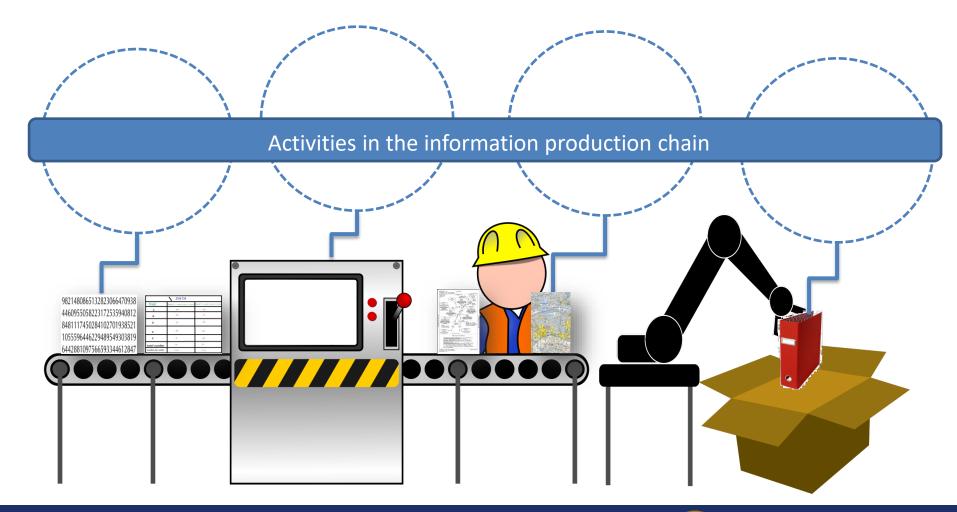
The Audit Process Review

Thoughts or questions

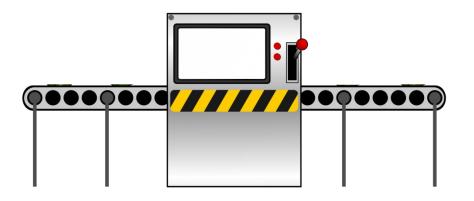
Day 3 Agenda

- Data and information management
- Quality management system
- Production control and configuration management
- Understanding metadata in safety oversight
- Group metadata exercise and presentations

Data and Information Management



Module Objectives


- Data, information, and knowledge concepts and how they support ICAO Annex 15 requirements
- Data management and information management
- Metadata, Record Keeping and Artifacts

The Information Factory

Let's Build a Factory

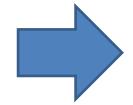
- What are we making?
- What are the performance requirements (specifications) for the product?
- Where do the raw materials come from?

- What is the tolerance for the raw materials?
- How much variation is acceptable?
- What is the process to make the product?
- What resources are needed?
- How do we apply the process to multiple products?
- How do we meet performance requirements?

^{*}Answers at the end of this presentation

Building Products and Services

Creating Business and Consumer Value



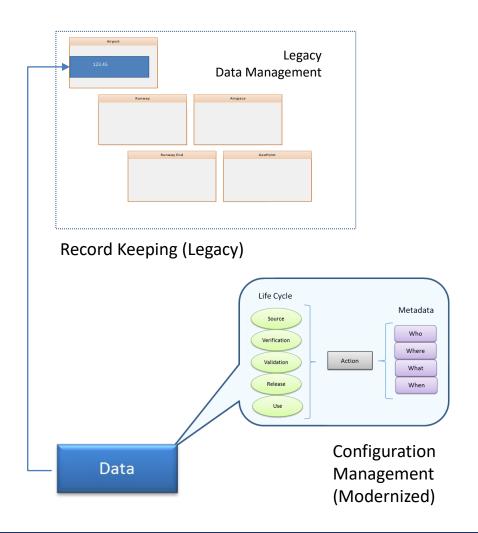
Raw Materials

People, Tools, Process

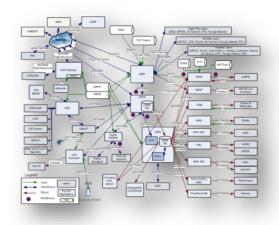
Product or Service

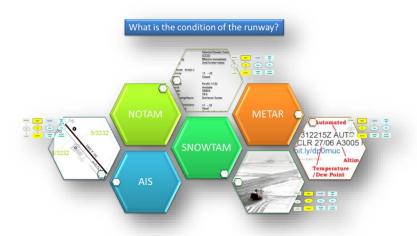
Data and Information Management

Data Management is about managing data throughout its lifecycle



Information Management is about providing business context to the data to create value


The information product or service provides context to deliver business and consumer value


Data Management Shift

A paradigm shift from a record-keeping system where the latest version of the data is recorded, to a configuration management system where the life-cycle actions for each piece of data is recorded

The Information Management Shift

Data Systems Focus

What helps systems process (Instances)

Information Focus

What helps humans understand (Relationships)

Managing Data and Information

Data Management

Activities to support the management of data (i.e., data assurance)

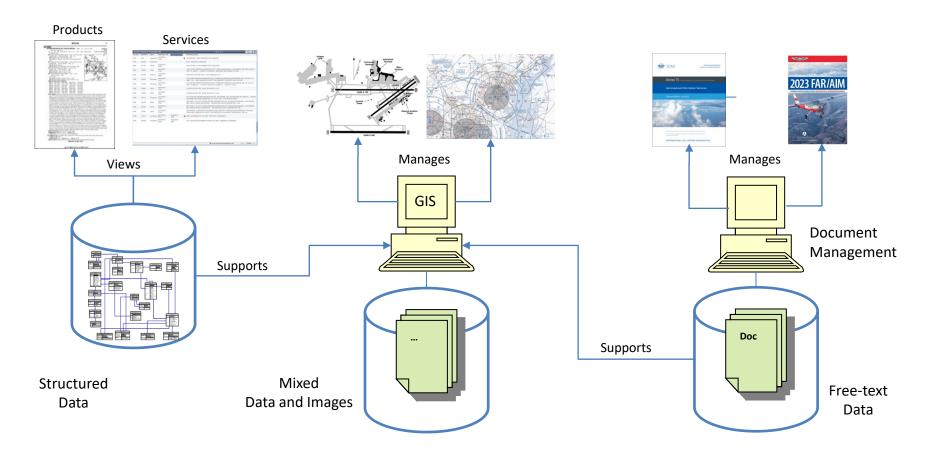
- Data are raw values
- Structure of data
- Ensure the tolerance (accuracy) requirement


Information Management

Activities to support the management of information (i.e., the business value)

- Information adds context to data (raw values)
- Format of information
- Ensure the performance requirement of the information

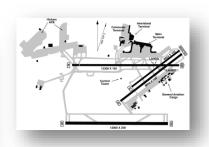
Where are the Data Requirements?



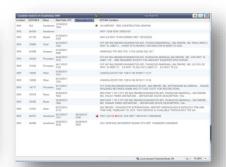
Types of Data

- Sensor or measure
- User input
- Interactions
- Calculated
- Metadata

Diversity of Information Products and Services

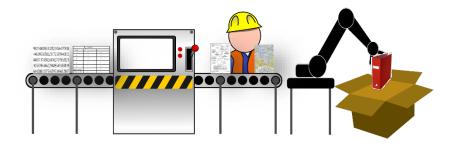


Information Products and Services



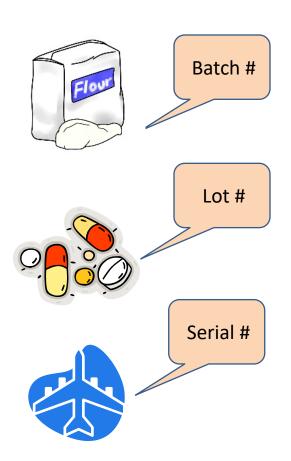
Data or Information?

Data


- 1234.6
- 5/10/23
- 100
- Murray
- Red
- 35000

Information

- 1234.6 kilos
- May 5th, 2023
- 100 degrees Fahrenheit
- Dr. Murray, professor
- A red light at an intersection
 - \$35,000


14

What Happens in the Information Factory?

METADATA, RECORD KEEPING AND ARTIFACTS

Metadata 101

Food production, drug manufacturing, and aircraft parts production all:

- have systems to manage the source, production, and distribution of their products
- capture metadata about the source;
 metadata provides the identification and
 makeup of the product or part that is being provided

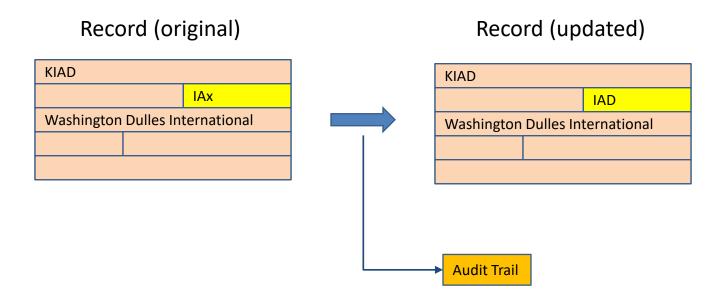
Is aeronautical data different?

Record Keeping

Table

KBWI BWI XXX **Baltimore Washington International** MD ууу **KIAD** IAx xxx1 Washington Dulles International VA yyy2 **KDCA** DCA xxx2 **Washington National** DC ууу3

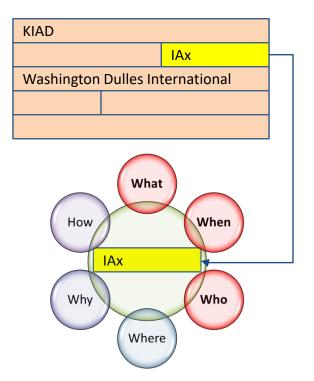
Record


XXX1 IAX
Washington Dulles International
VA yyy1

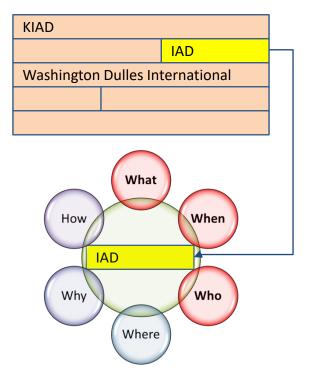
Element

IAx

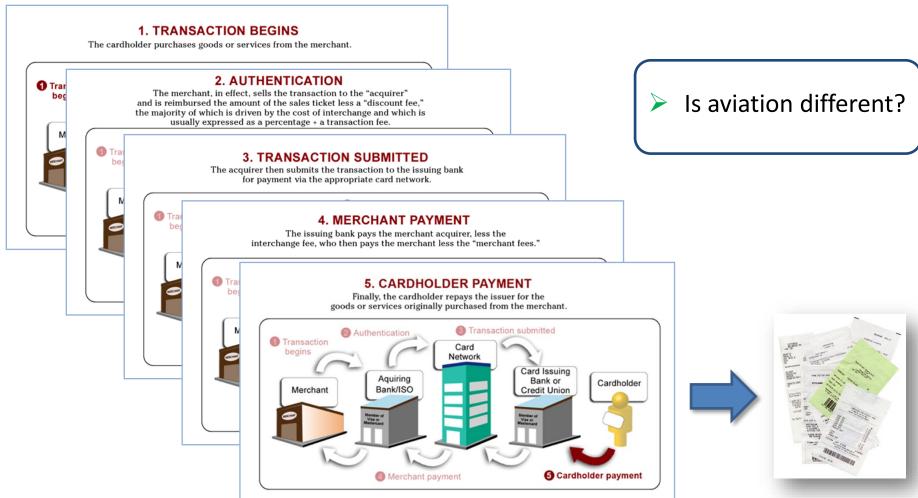
ICAO ID	IATA ID	Name	State	Field y
KBWI	BWI	Baltimore	MD	ууу
KIAD	IAD	Washington D	VA	ууу1
KDCA	DCA	Washington N	DC	ууу2


Record Updates

Modern information systems usually generate an audit trail when the record is updated. This may or may not go to the element level.


Metadata

Record (original)



Record (updated)

Metadata in Credit Card Processing Chain

Source: http://www.retailersprocessingnetwork.com/process-of-a-credit-card-transaction.htm

Artifacts vs. Metadata

Artifacts

Metadata

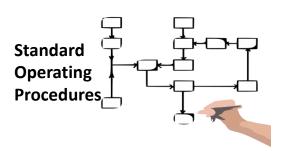
Documents to support the processing of data

- Origination
- Receipts
- Checklists
- QA reviews
- Approvals

Data to describe the actions supporting the processing of data

- Who
- What
- When
- Why
- Where
- How

Documents are information containers providing data to describe actions performed

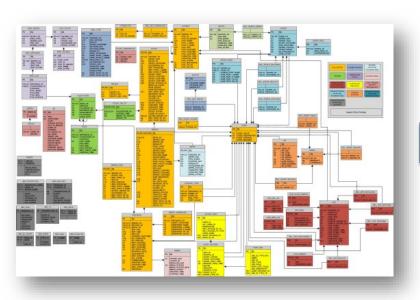

Artifacts are Everywhere

Work Documents

Powering the Data Engine

KNOWLEDGE AS BUSINESS RULES

What Does Knowledge Look Like?


Knowledge comes in many forms:

- Specifications
- Standard operating procedures
- Workflow
- **Business rules**
- Scenarios
- Formulae (Example: DegF = DegC * 9/5 + 32)
- Data descriptions and catalogs
- Metadata (knowledge about an activity)
- Experience

How to get ...

...from here (data)...

People Tools Process Knowledge

Metadata

...to here (product/service)?

Information Product/Service

Data, Information and Knowledge

Data Management
is about managing
data throughout its
lifecycle

is about providing business context to the data to create value

is about leveraging data and information as intellectual capital

DATA

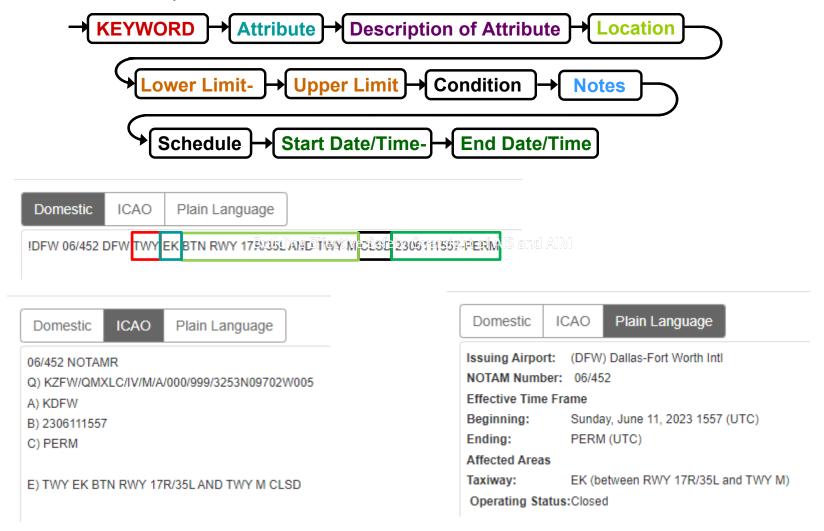
Unorganized
Numbers,
Words,
Sounds,
Images
(i.e. cycle time or turnaround time)

INFORMATION

Data Arranged/
Processed
Into
Meaningful
Patterns
(i.e. correlation
between cycle time and customer satisfaction index)

KNOWLEDGE

Information
Put Into
Productive Use,
Made Actionable
(i.e. process evaluation
and improvement)

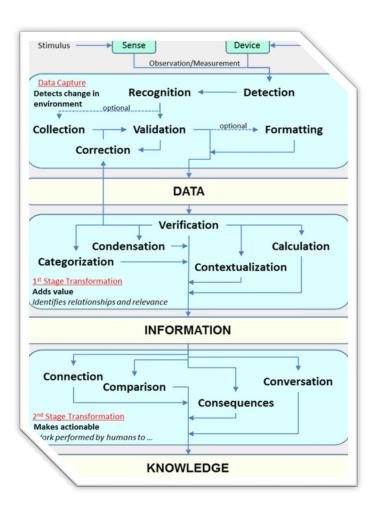

Scenarios as Knowledge

- What is an event scenario?
 - Condition or event processed to capture rules specific to each category of aeronautical information events
- Each scenario documents:
 - Minimum required data
 - AIXM mapping of NOTAM elements
 - Translations between the digital encoding to FAA legacy,
 ICAO, and plain language
 - Business rules



Scenarios as Knowledge

A NOTAM example:



AIS: The Information Factory

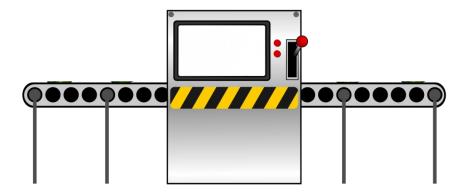
Thoughts...

We...

- Collect data, develop information and publish products and services
- Use knowledge to assure quality
 - QMS
 - Configuration management
 - Production control
- Use metadata and artifacts to provide traceability and mitigate risk

Risk can occur at any level

Questions and Discussion



References

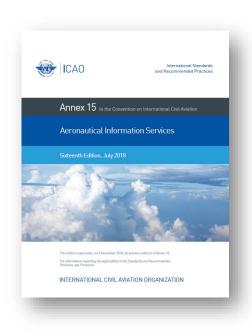
- ICAO Annex 4
- ICAO Annex 11
- ICAO Annex 14
- ICAO Annex 15
- PANS-AIM/Data Catalogue, Doc 10066
- https://notams.aim.faa.gov/notamSearch/disclaimer.html

Let's Build a Factory

- What are we making?
 - AIP, NOTAM, charts
- What are the performance requirements (specifications) for the product?
 - ICAO Annex 15 (standards)
- Where do the raw materials come from?
 - Data originators

- What is the tolerance for the raw materials?
- How much variation is acceptable?
 - Data quality requirements (ICAO Annex 15)
- What is the process to make the product?
 - Documented procedures (standard operating procedures)
- What resources are needed?
 - Competent personnel, funding, technology
- How do we apply the process to multiple products?
 - Production control and configuration management
- How do we meet performance requirements?
 - Quality management system

Quality Management System



Module Objectives

- Present the Quality Management System (QMS) as described in ICAO Annex 15
 - Describe means of compliance to meet QMS requirements
 - Discuss how a QMS functions as a safety risk control in the management of aeronautical information, data, products and services
- Industry QMS standards

ICAO Standards

QUALITY MANAGEMENT SYSTEM

ICAO QMS Standards

ICAO Definitions

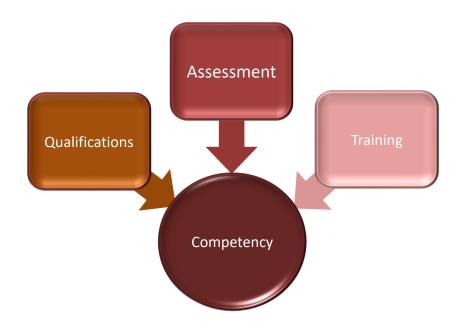
Chapter 3.6 Quality management system

3.6.1 Quality management systems shall be implemented and maintained encompassing all functions of an aeronautical information service, as outlined in 2.2. The execution of such quality management systems shall be made demonstrable for each function stage

2.2 AIS responsibilities and functions

2.2.1 An AIS shall ensure that aeronautical data and aeronautical information necessary for the safety, regularity or efficiency of air navigation are made available in a form suitable for the operational requirements of the air traffic management community

QMS Requirements



ICAO Definition

Chapter 3.6, Quality management system

3.6.1 Quality management systems shall be implemented and maintained...

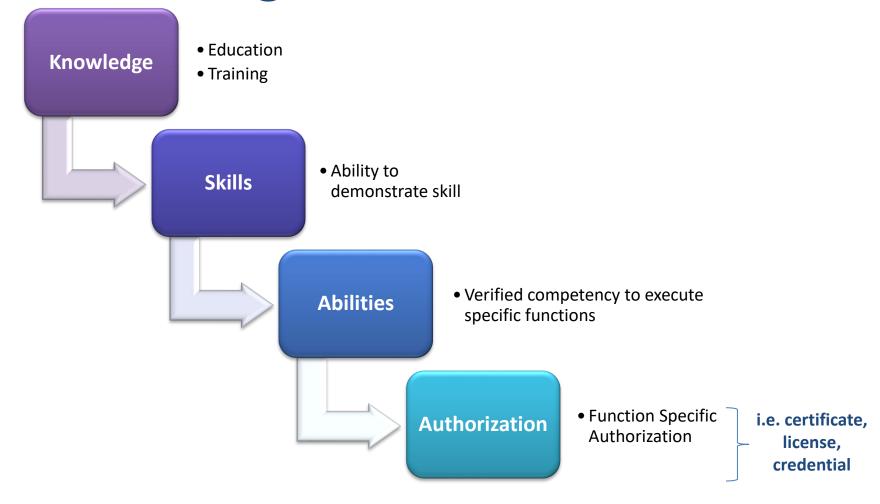
The execution of such quality management systems shall be made demonstrable for each function stage.

Competency

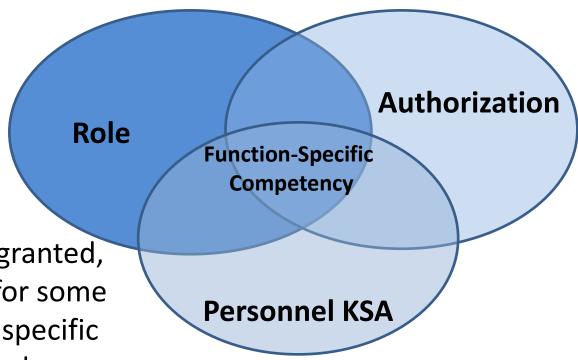
ICAO Annex 15, Chapter 3.6 Quality management system

3.6.4 Within the context of the established quality management system, the competencies and the associated knowledge, skills and abilities required for each function shall be identified, and personnel assigned to perform those functions shall be appropriately trained.

FAA Credentialing

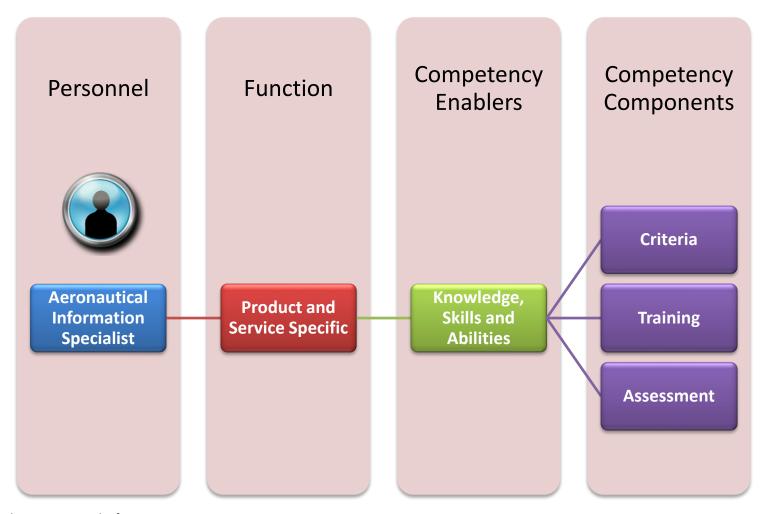

The FAA provides independent oversight of how personnel are trained and certified to perform direct safety-related air traffic control services or certification on certifiable systems, subsystems, and equipment supporting the National Airspace System. It ensures operational personnel have the required knowledge, skills and abilities to perform their assigned functions

While technically not a license, a credential acts like a license in that the holder is authorized to perform the duties as defined on the credential document


Resource: FAA Order 8000.90B, Air Traffic Safety Oversight Credentialing and Control Tower Operator Certification Programs

Knowledge, Skills and Abilities

Role-based Competency Framework



The authorization, once granted, is good unless removed for some reason, but the function specific competency can expire or be on hold.

Proficiency can lapse.

Competencies are measured by initial and periodic assessments to maintain proficiency.

AIS Competency Management Structure

 $Resource: Manual \ on \ Aeronautical \ Information \ Services \ Training, \ Doc \ 9991.$

Competency Management

- 3.6.4 Within the context of the established quality management system, the competencies and the associated knowledge, skills and abilities required for:
 - Each function shall be identified, and
- Personnel assigned to perform those functions shall be appropriately trained.
- 4 Processes shall be in place to ensure that personnel possess the competencies required to perform specific assigned functions.
- 5 Appropriate records shall be maintained so that the qualifications of personnel can be confirmed.
- 6 Initial and periodic assessments shall be established that require personnel to demonstrate the required competencies.

Periodic assessments of personnel shall be used as a means to detect and correct shortfalls.

Sample Competency Audit Survey

	Group	ldentify competencies	Document process to manage, conduct, record	Employees appropriately trained	Records maintained	Initial Assessment of competencies	Periodic Assessment of competencies	6 Means to detect & correct shortfalls	Access only by authorized personnel
1	Airport Survey								
2	AIS- Airports								
3	AIS- Airspace								
4	AIS - Procedures								
5	Obstacle Evaluation								
6	Obstacle Verification		✓						
7	Airport Mapping		✓						
8	Instrument Flight Procedures		✓						
9	IFP Charting		✓						
10	Visual Charting		✓						
11	En Route Charting								
12	RADAR Video Maps								
13	NOTAMS – Policy								
14	NOTAM Originators								
15	State NOTAM Office								

Competency Training Syllabus

VERTICAL OBSTRUCTIONS SYLLABUS

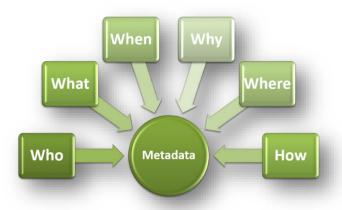
Course Overview

This training syllabus, used in conjunction with the OJT Rubric – Vertical Obstructions (VO), is designed to provide a structured training approach for Aeronautical Safety of Navigation VO analysts. The trainer will instruct in knowledge, skills, and abilities (KSA) required to maintain a Vertical Obstruction rating under the FAA Credentialing structure. Introduction/Overview – ISO and Security procedures

- Phase 1 Basic
 - AOE Functions Actions, Layers, Search, History
 - Production Shapefile and feature creation and manipulation
 - Attributions Accuracies, DEM, and codes
 - Maintenance
 - RemoteView Functions Imagery Research, Search, Ordering
 - Production Open Imagery, Saving, Graphics, Auto Review, MSP, Shapefiles
 - Attribtion Shapemaster, Codes, Accuracies, DEM
 - Maintenance
- Phase 2 Proficient
 - o Source Supplement

- Phase 3 Advanced
 - Database Functions Java Basics, Search, Map, Query, Diagnostics
 - Production Access Files, managing Layers, Find matches, Accept/Update/Commit
 - o Attributions Accuracies, DEM, and codes
 - Maintenance
- Metrics

Learning Objectives


- Student should be able to understand, analyze, edit, manipulate, and commit Vertical Obstructions.
- Student should be able to understand, analyze, manipulate, and collect Vertical Obstructions from RemoteView.
- Student should be able to manage Vertical Obstruction datasets.

Target Audience

This course is required for analysts who collect Vertical Obstructions.

Course Procedure

Training Overview

Metadata

Metadata. Data about data (ISO 19115*)

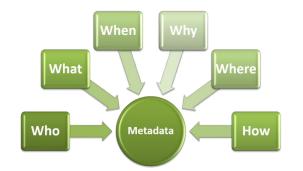
(Note. — A structured description of the content, quality, condition or other characteristics of data.)

ICAO Definition

3.6.5 Each quality management system shall include the necessary policies, processes and procedures, including those for the use of metadata, to ensure and verify that aeronautical data is traceable throughout the aeronautical information data chain so as to allow any data anomalies or errors detected in use to be identified by root cause, corrected and communicated to affected users.

Metadata (continued)

ICAO Definition


- 4.2.1 Metadata shall be collected for aeronautical data processes and exchange points.
 - 4.2.2 Metadata collection shall be applied throughout the aeronautical information data chain, from origination to distribution to the next intended user.

PANS-AIM

- 4.2 The metadata to be collected shall include, as a minimum:
 - a) the names of the organizations or entities performing actions of originating, transmitting or manipulating the data;
 - b) the action performed; and
 - c) the date and time the action was performed.

Metadata (continued)

ICAO Definition

5.3.1.2 Each data set shall be provided to the next intended user together with at least the minimum set of metadata that ensures traceability.

PANS-AIM

- 5.3.2 Each data set shall include the following minimum set of metadata:
 - a) the names of the organization or entities providing the data set;
 - b) the date and time when the data set was provided;
 - c) period of validity of the data set; and
 - d) any limitations with regard to the use of the data set.

Metadata (continued)

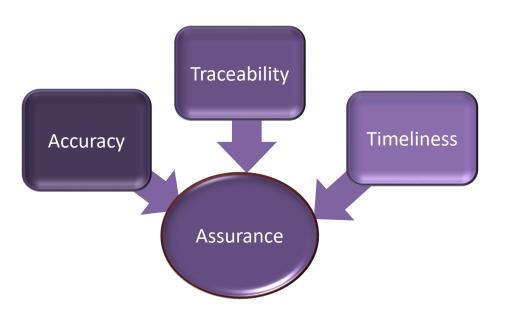
Authoritative	Who	created the data?manages the data?	Required
	What	is the data content?source data was used?	Required
Timely	When	 is the time period of the content? was the data created?	Required
	Why	was the data created?are there missing values?	
Discoverable	Where	is the study area?can I access the data?	
Accurate	How	was the data created?is the data distributed?	

Artifacts vs. Metadata

Documents that support a process


- Origination documents
- Receipts
- Checklists
- QA reviews
- Approvals

Metadata


Data that describes the actions supporting a process

- Who
- What
- When
- Why
- Where
- How

Revision History from Metadata

Not an advertisement or endorsement - EXAMPLE ONLY

Quality Assurance

ICAO Definition

3.6.6 The established quality management system shall provide users with the necessary assurance and confidence that distributed aeronautical data and aeronautical information satisfy the aeronautical data quality requirements.

Data Quality Assurance

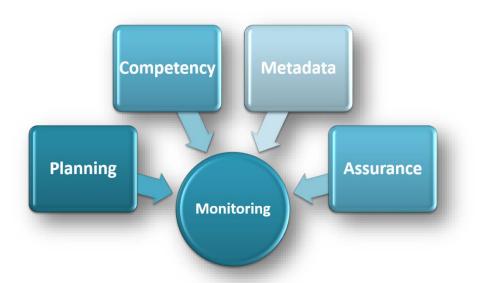
- Accuracy
 - Shall be in accordance with its intended use.
- Resolution
 - Shall be commensurate with the actual data accuracy.
- Integrity
 - Shall be maintained throughout the data process from origination to distribution to the next intended user
- Traceability
 - Shall be ensured and retained as long as the data is in use
- Timeliness
 - Shall be ensured by including limits on the effective period of the data elements
- Completeness
 - Shall be ensured in order to support the intended use

Line of Sight

QMS

• 3.6.1 QMS implemented and maintained encompassing all functions of an aeronautical information service, made demonstrable for each function stage.

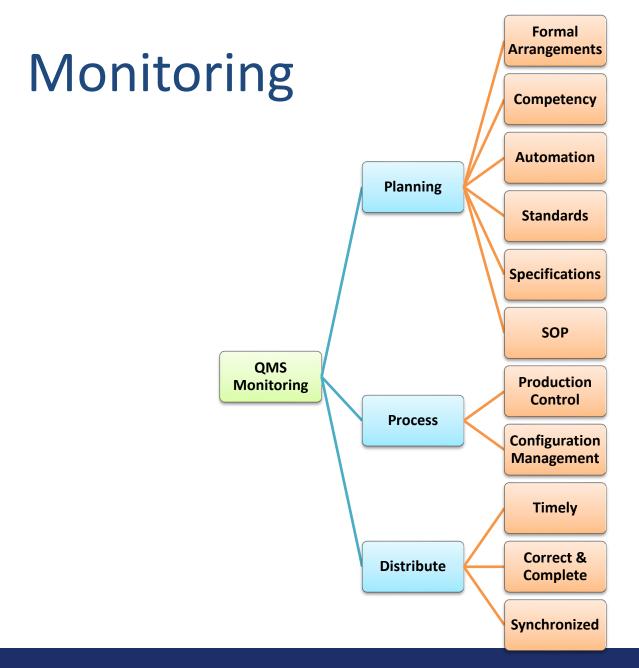
Planning

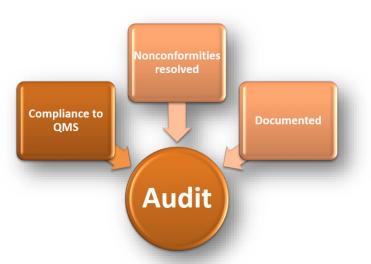

• 3.6.5 QMS includes the necessary policies, processes and procedures.

Metadata

• 4.4.2 Metadata collected and be applied throughout the aeronautical information data chain.

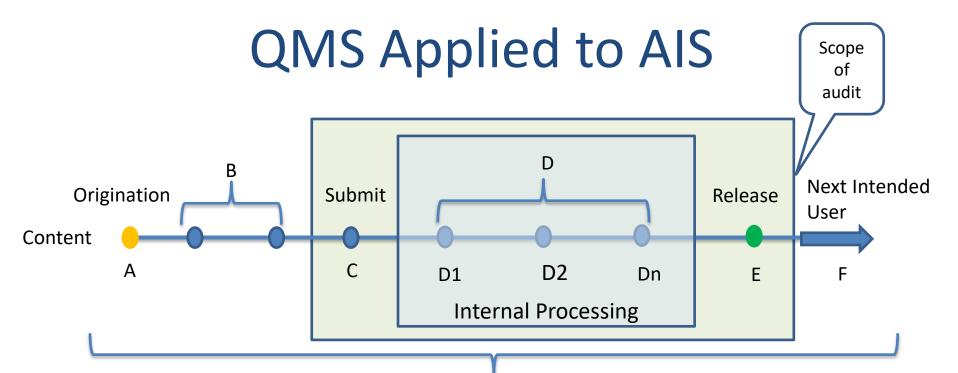
Assurance


• 3.6.5 the data traceability requirements are met through the provision of appropriate metadata.


Monitor

ICAO Definition

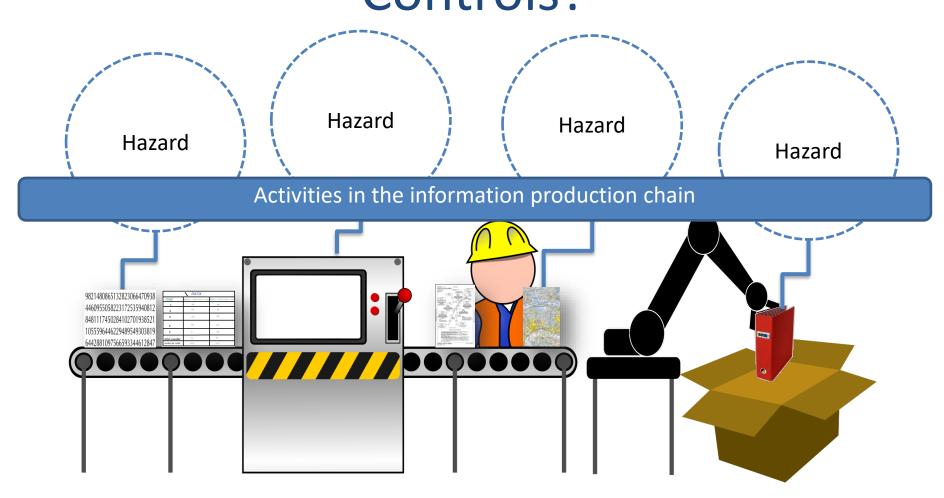
3.6.7 All necessary measures shall be taken to monitor compliance with the quality management system in place.



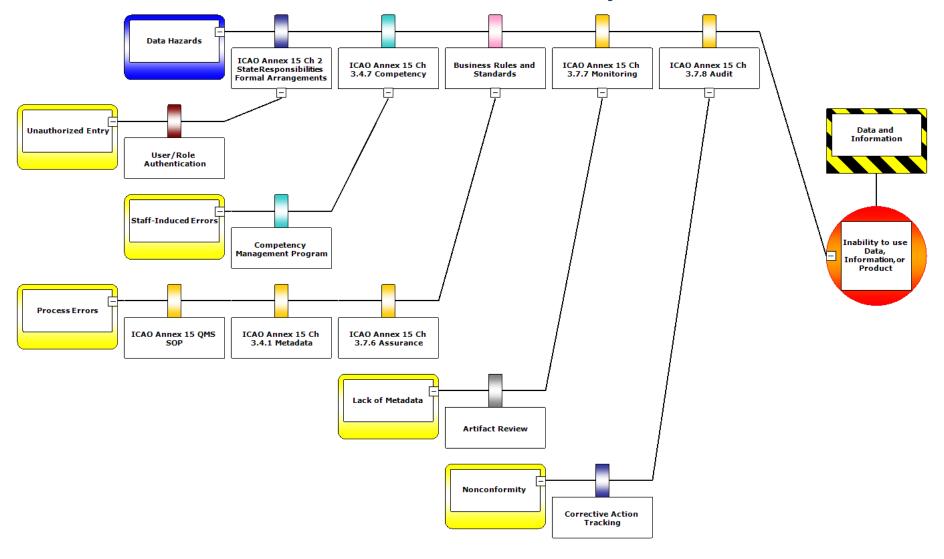
Audit

ICAO Definition

3.6.8 Demonstration of compliance of the quality management system applied shall be by audit. If nonconformity is identified, initiating action to correct its cause shall be determined and taken without undue delay. All audit observations and remedial actions shall be evidenced and properly documented.


Aeronautical Data Chain

Activity	Description
Α	Origination
В	Pre-AIS processing
С	Submission to AIS
D	AIS Internal Processing
E	Release by AIS
F	Downstream Processing


Source: FAA Air Traffic Safety Oversight Service, Audit Report, Aeronautical Data Metadata, ADT-FY15-010; dated May 14, 2015

AIS: What are the Safety Risk Controls?

Annex 15 QMS as the Safety Risk Control

Questions and Discussion

- What does QMS mean to safety oversight?
- What does the State ensure?
- How do we ensure...?
- What tools do we have?

Thoughts...

ICAO Annex 15 requires QMS implementation

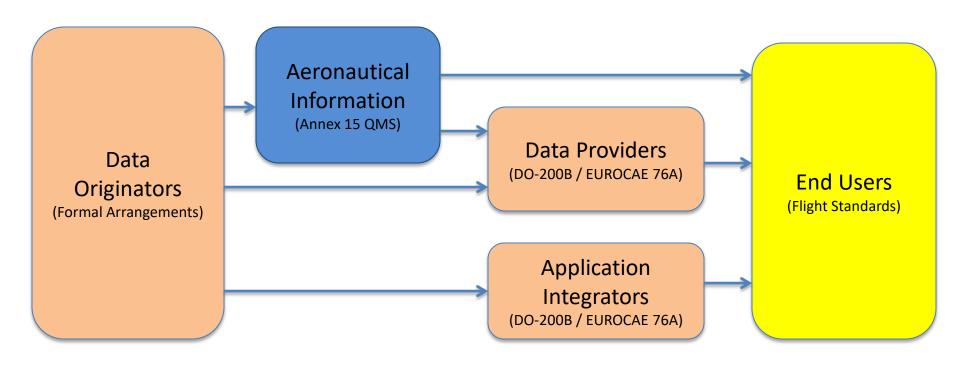
A QMS includes:

- Competency
- Metadata
- Assurance
- Monitoring
- Audit

A QMS helps:

- Meet aeronautical information performance requirements
- Control products, services and process outcomes

QMS = safety management control



Industry Standards for Processing Aeronautical Data

RTCA DO-200B EUROCAE ED-76A

Data Chain Overview

Resource: RTCA DO-200B Figure 1-2, Aeronautical Data Chain Participants and Flow of Aeronautical Data

Data Quality Requirements

2.3.2 Data Quality Characteristics

- Accuracy
- Resolution
- Integrity
- Traceability
- Timeliness
- Completeness
- Format

Resource: RTCA DO-200B

Aeronautical Data Processing Requirements

- 2.4.1 Data Processing Procedure Requirements
- 2.4.2 Data Alteration Communication Requirement
- 2.4.3 Data Configuration Management
- 2.4.4 Competency Management
- 2.4.5 Aeronautical Data Tool Qualification
- 2.4.6 Defining Data Security Requirements

Resource: RTCA DO-200B, Ch. 2.4 Defining Aeronautical Data Processing Requirements

Data Configuration Management

- 2.4.3.2 The following requirements apply to data placed under configuration management:
- Each distinct version of data element or data set shall be assigned an unique identification
- Configuration management procedures shall ensure that a data element cannot be changed without changing the data element identification

Resource: RTCA DO-200B, Ch. 2.4 Defining Aeronautical Data Processing Requirements

Data Configuration Management (continued)

These records shall be sufficient to allow the following to be established:

- That data element has not been separated from its correct label
- The start and end dates of the period of validity of the data element
- The date of production of the data element
- The supplier of each data value contained within the data element or data set
- The procedures used to produce the data elements
- Verification and Validation checks, including feedback comparison output as relevant

Data Configuration Management (continued)

A copy of each data element shall be retained for a period determined by the Configuration Management Plan.

The method of storage and the numbers of copies maintained shall be such that:

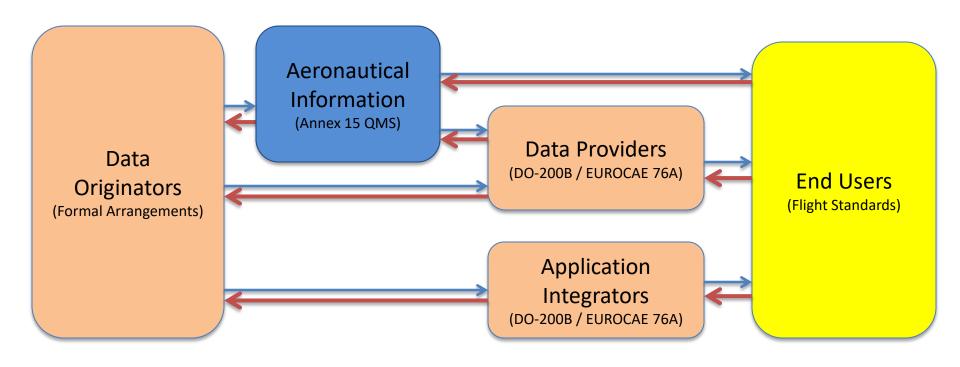
- The integrity of each data element can be assured for the entire period that it is retained
- Data storage media is protected against physical damage and degradation

Resource: RTCA DO-200B, Ch. 2.4 Defining Aeronautical Data Processing Requirements

Quality Management Requirements

- 2.5.1 Quality Management Procedure Requirements
- 2.5.2 Quality Management Control
- 2.5.3 Review
- 2.5.4 Document Control Requirements
- 2.5.5 Quality Records
- 2.5.6 Management Reviews

Resource: RTCA DO-200B, Ch. 2.5 Defining Quality Management Requirements


Compliance

- 3.1 Demonstration of Compliance
- Shall demonstrate such compliance to the applicable sections
- Compliance, normally, demonstrated by audit
- 3.2 Audit Objectives
- The audit shall confirm that the QMS meets all requirements and that any compliance deviations have been coordinated, documented, and tracked
- 3.3 Audit Procedures
- 3.4 Audit Report

Resource: RTCA DO-200B, Ch. 3 Compliance

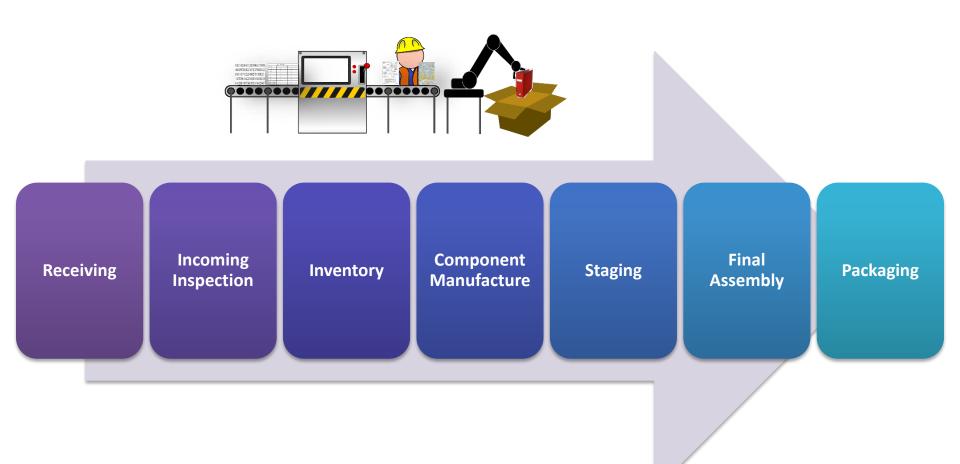
Data Chain with Feedback

Questions and Discussion

References

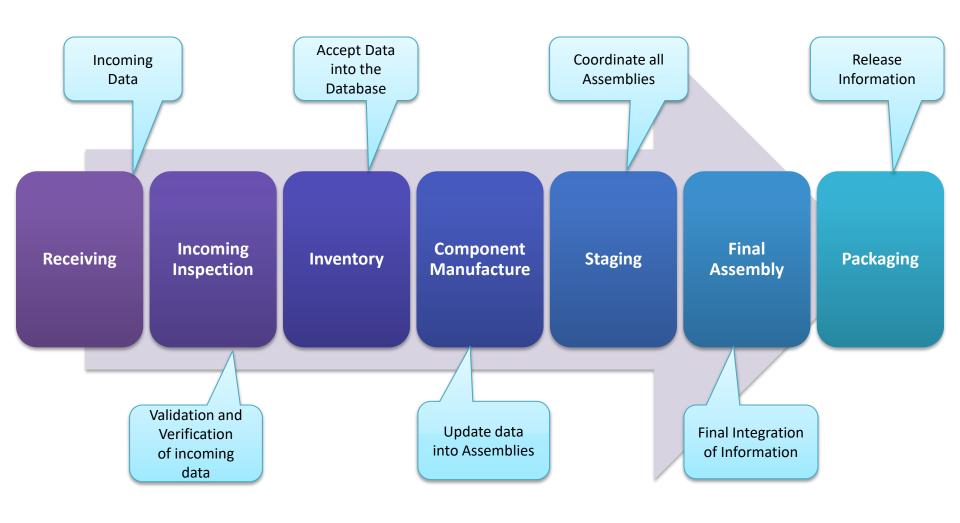
- ICAO Annex 15
- PANS-AIM/Data Catalogue, Doc 10066
- FAA Order 8000.90B, Air Traffic Safety Oversight Credentialing and Control Tower Operator Certification Programs
- FAA Air Traffic Safety Oversight Service, Audit Report, Aeronautical Data Metadata, ADT-FY15-010; dated May 14, 2015
- NGA Sample Competency Syllabus:
 - Aeronautical Analyst, Vertical Obstructions
- Lessons from Peter Drucker, Peter Drucker
- Famous principle from Tom DeMarco
- RTCA DO-200B
- EUROCAE ED-76A

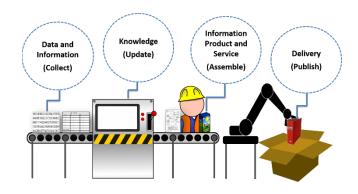
Production Control and Configuration Management



Module Objectives

- Discuss a production process and the relationship to the aeronautical information process
- Introduce production management components
- Detail production control and configuration management
- Link to QMS requirements

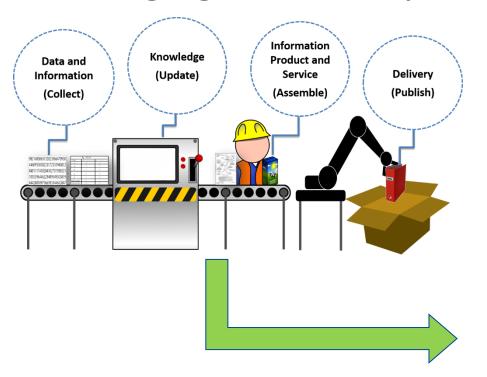

Production Process

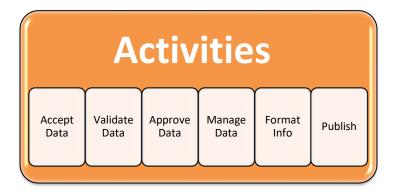


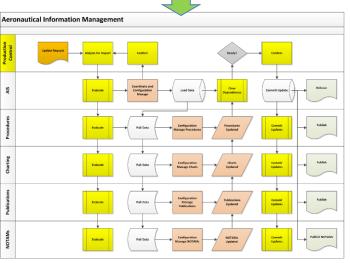
Aeronautical Information Factory

Aeronautical Information Process

Production Control of Workflow

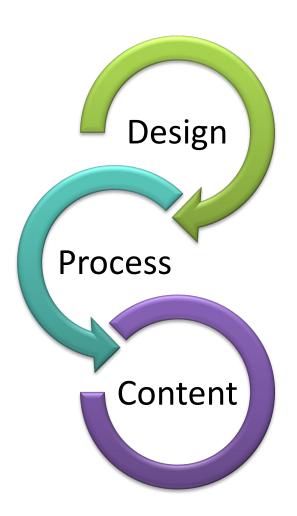

Configuration Management of Products and Services


PRODUCTION MANAGEMENT



Production Management

Managing the Factory

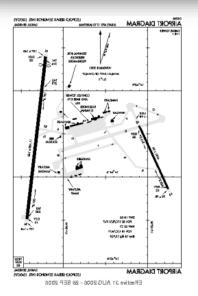

Workflow

Information Factory

Managing Aeronautical Information	
What are we going to build?	Aeronautical product/service (AIP, NOTAM)
What are the performance requirements (specifications) for our products?	Annex 15 Standards
What are the tolerances for our raw materials (data)?	Data quality requirements (Annex 15)
How much variation is acceptable?	
Where do we get our raw data?	Data originators
What is our process to build products?	Documented procedures (SOP)
What resources are needed to execute the process?	Competent personnel
How do we apply our process to multiple products?	Production control and configuration management
How do we know we will meet the performance requirements?	Quality Management System

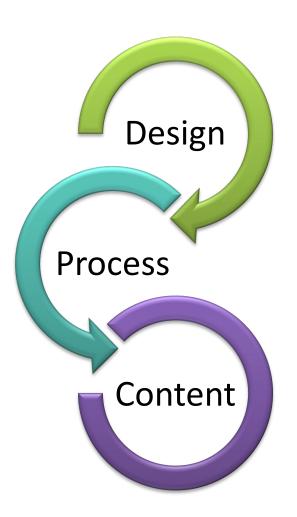
Production Management

Production Control


 Management of the production workflow to coordinate the configuration management of deliverables or outcomes

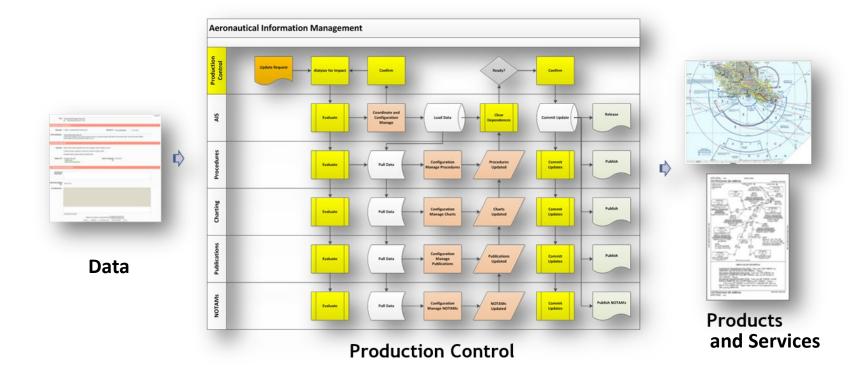
Configuration Management

 Management of changes to a system (data, products, services) to ensure the performance requirements of the system are maintained

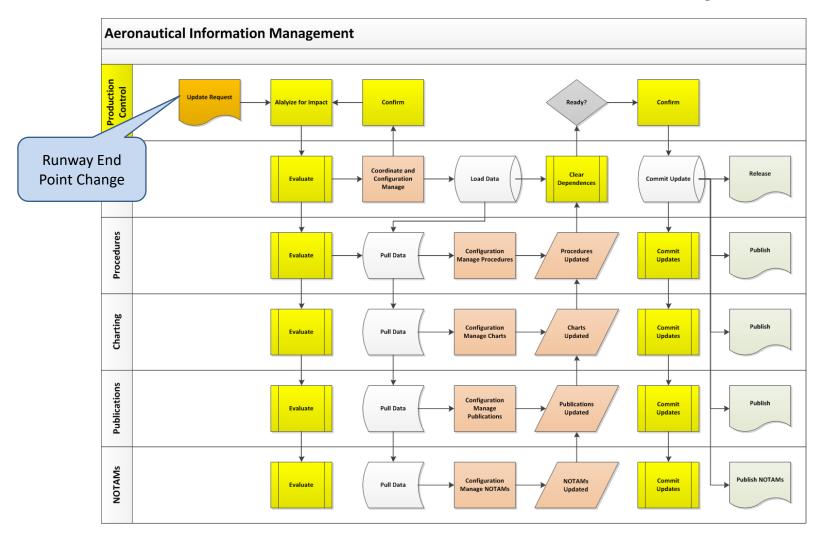

Questions to Consider

- What ingredients are listed on the butter or milk?
- Is there any ingredient in the butter that is spoiled?
- What changes did Chef Catherine make to the pasta recipe that turned it yellow?
- Would you expect the Aeronautical Information Office who produced the airport diagram to be any different?

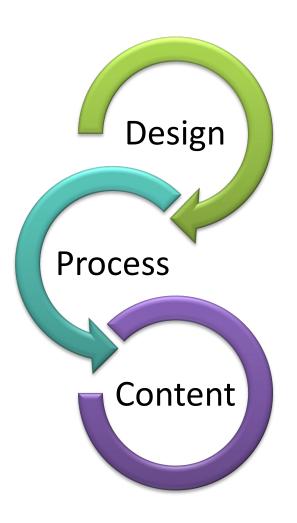
Production Management


Production Control

 Management of the production workflow to coordinate the configuration management of deliverables or outcomes

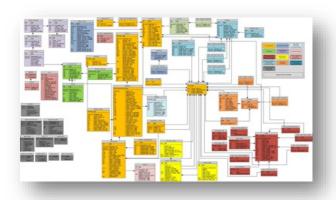

Configuration Management

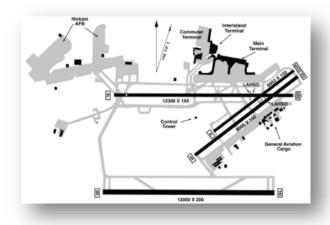
 Management of changes to a system (data, products, services) to ensure the performance requirements of the system are maintained


Synchronized Data Across Multiple Products and Services

Production Control Example

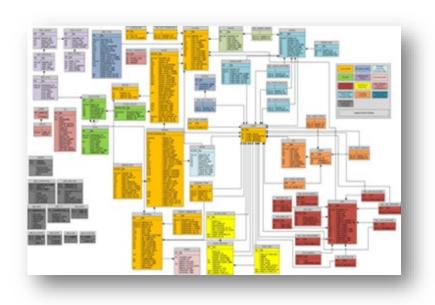
Production Management


Production Control


 Management of the production workflow to coordinate the configuration management of deliverables or outcomes

Configuration Management

 Management of changes to a system (data, products, services) to ensure the performance requirements of the system are maintained


What is Managed?

Configuration Items

- Exchange model
- Data element
- Feature
- Document
- Chart
- Process
- Database
- Publication

Exchange Model (Structure)
AIXM

Database (Container)

Data feature

Data Feature (Content)

- Runway
- Obstacle

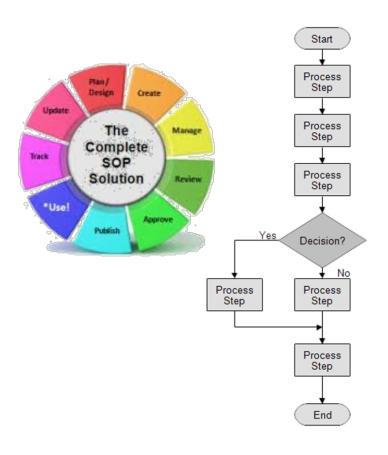
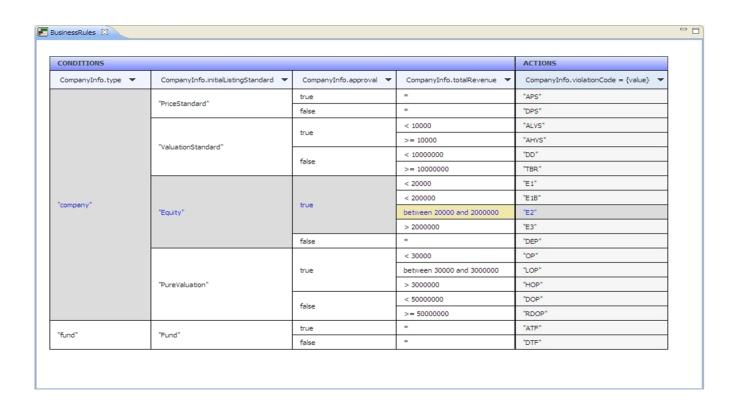
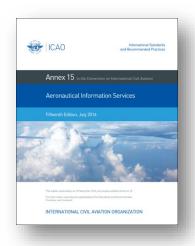


Chart (Container)

- Content depicted as features
- Feature is the visual representation of data element(s)
- Visualization standard(s)


Feature (Content)

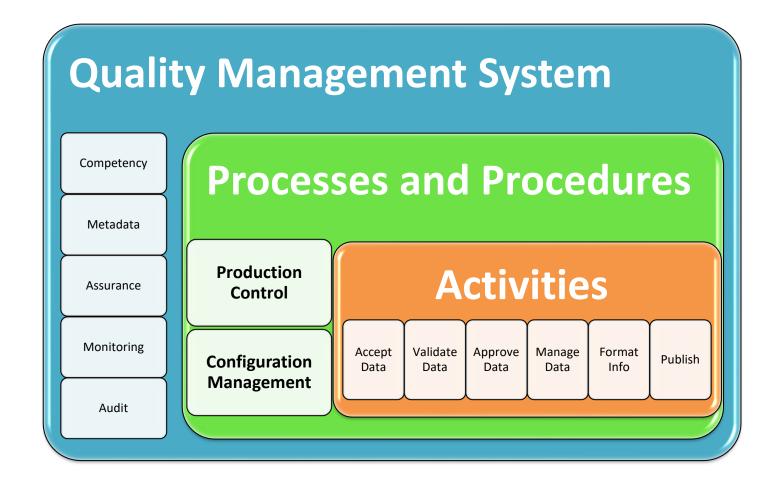
- Airspace
- Airport
- Navaid
- Obstacle
- Route

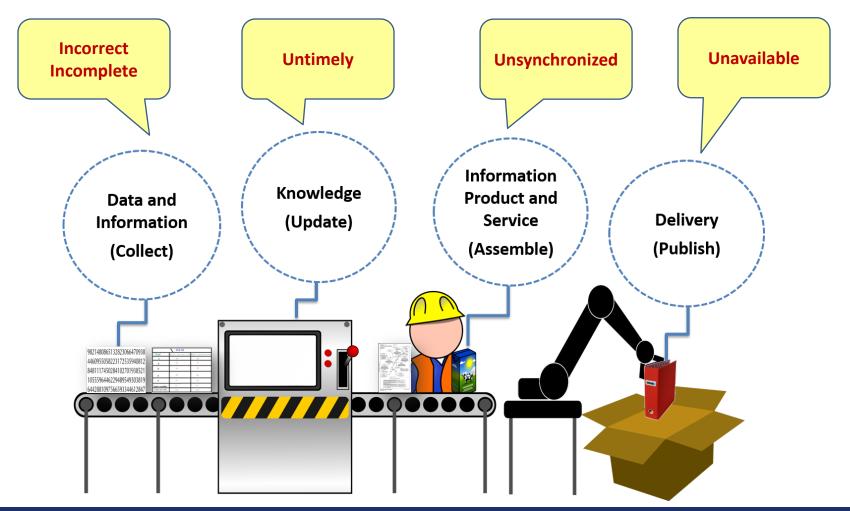


Standard operating procedures and processes are normally documented and retained

- Is it important to know information (who, what, why) about changes to a process?
 - If so, what information is retained?

Business rules used by automated system




A document or publication is a container

- How do we manage revisions?
- What information do we keep about the different revisions?

Linking to QMS

What Could Go Wrong?

AOV Risk-Based AIS Surveillance Program

What could go wrong?

Data and Information Hazards

Incorrect

Incomplete

Untimely

Unsynchronized

Unavailable

*Unprotected

What does risk look like?

Variation

Competency

Business Rules

Process

Traceability

What prevents things from going wrong?

Controls/Barriers

Formal Arrangements

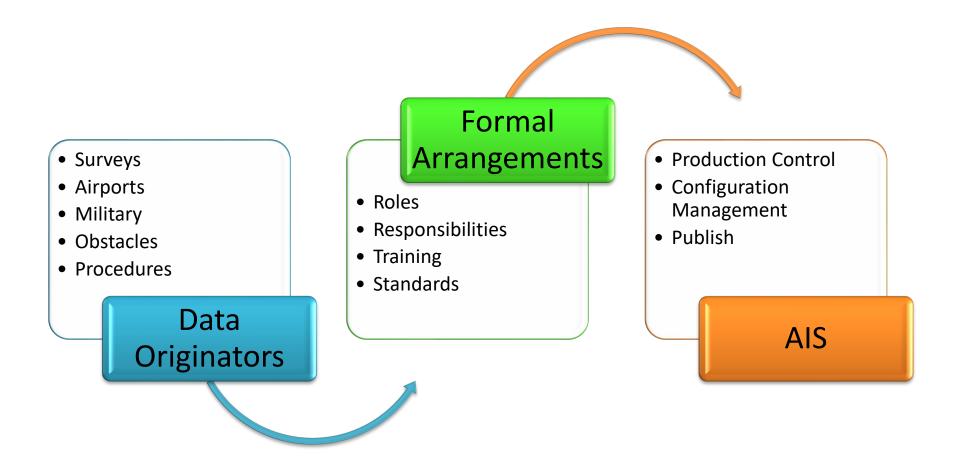
QMS

Production Control

Configuration Management

How will I know if controls are working?

Safety Oversight Activities


Continuous Monitoring

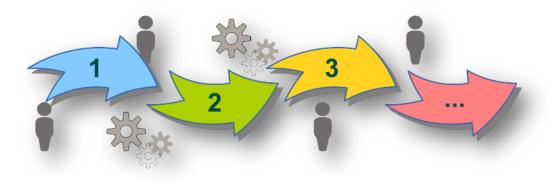
Audits and Assessments

Inspections

Formal Arrangements

Quality Management System

Production Control

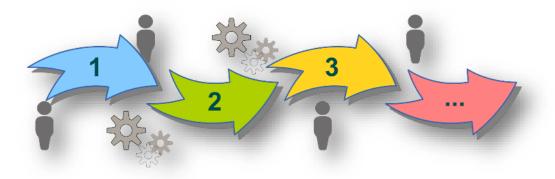

Data and Information Hazards

Production Control

Incorrect
Incomplete
Unsynchronized
Untimely
Unavailable

Manage workflow to coordinate the configuration management of deliverable(s)

Configuration Management


Data and Information Hazards

Incorrect
Incomplete
Unsynchronized
Untimely
Unavailable

Configuration Management

Manage changes to a system (data, products, services) to ensure performance requirements are maintained

AOV Risk-Based AIS Surveillance Program

What could go wrong?

Data and Information Hazards

Incorrect

Incomplete

Untimely

Unsynchronized

Unavailable

*Unprotected

What does risk look like?

Variation

Competency

Business Rules

Process

Traceability

What prevents things from going wrong?

Controls/Barriers

Formal Arrangements

QMS

Production Control

Configuration Management

How will I know if controls are working?

Safety Oversight Activities

Continuous Monitoring

Audits and Assessments

Inspections

Thoughts...

- Production control is the management of the data chain from origination to publication
- Databases and products share a common production but have their own configuration management for synchronization
- There is a significant dependency on metadata for traceability
- A single change can affect the content management of multiple products and services

Thoughts (continued)...

- Configuration management is the management of changes to a system to ensure performance requirements are maintained through configuration items:
 - AIXM (structure)
 - Database, chart, document (container)
 - Element or feature (content)
 - Publication (visualization)
- Provides traceability within a product or database
- Manages business rules and production control

Questions and Discussion

References

• ICAO Annex 15

Understanding Metadata in Safety Oversight

Metadata

- ICAO metadata requirements review
- Metadata types
 - Container metadata
 - Digital Data set metadata
 - **Activity** metadata
- Applying metadata to safety oversight

ICAO Annex 15 Standards Review

ICAO Definition

3.6.5 Each quality management system shall include the necessary policies, processes and procedures, including those for the use of metadata, to ensure and verify that aeronautical data is traceable throughout the aeronautical information data chain so as to allow any data anomalies or errors detected in use to be identified by root cause, corrected and communicated to affected

Resource: Annex 15, July 2018, Amendment 42

ICAO Annex 15 Standards Review Metadata

ICAO Definition

- 4.2.1 Metadata shall be collected for aeronautical data processes and exchange points.
- 4.2.2 Metadata collection shall be applied throughout the aeronautical information data chain, from origination to distribution to the next intended user.

PANS-AIM

- 4.2 The metadata to be collected shall include, as a minimum:
 - a) the names of the organizations or entities performing any action of originating, transmitting or manipulating the data;
 - b) the action performed; and
 - c) the date and time the action was performed.

Resource: Annex 15, July 2018, Amendment 42, PANS-AIM, July 2019, Edition 1

ICAO Annex 15 Standards Review Data Set Metadata

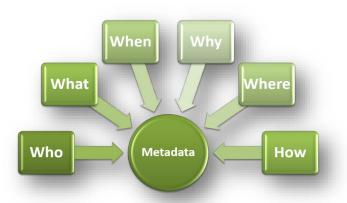
ICAO Definition

5.3.1.2 Each data set shall be provided to the next intended user together with at least the minimum set of metadata that ensures traceability.

PANS-AIM

- 5.3.2 Each data set shall include the following minimum set of metadata:
 - a) the names of the organization or entities providing the data set;
 - b) the date and time when the data set was provided;
 - c) period of validity of the data set; and
 - d) any limitations with regard to the use of the data set.

Resource: Annex 15, July 2018, Amendment 42, PANS-AIM, July 2019, Edition 1.


Metadata Collection Points

(Hypothetical)



Key Metadata Requirements

- Ensure and verify aeronautical data are traceable for any action performed throughout the data chain
- Ensure data sets contain information about the provider and limitations of use of the data

A deeper exploration into types of metadata

METADATA TYPES

Metadata Types

TWENTY-SEVENTH EDITION

CONSULT NOTAM FOR LATEST INFORMATION

Container

Administrative Metadata

> Structural Metadata

Dataset

Administrative Metadata

- •Name
- •Date and time
- Period of validity
- Usage limitations

Structural Metadata

Format

Process

Activity Metadata

- •Name
- Action
- Date and time performed

Database Transaction Log

Data Set Metadata

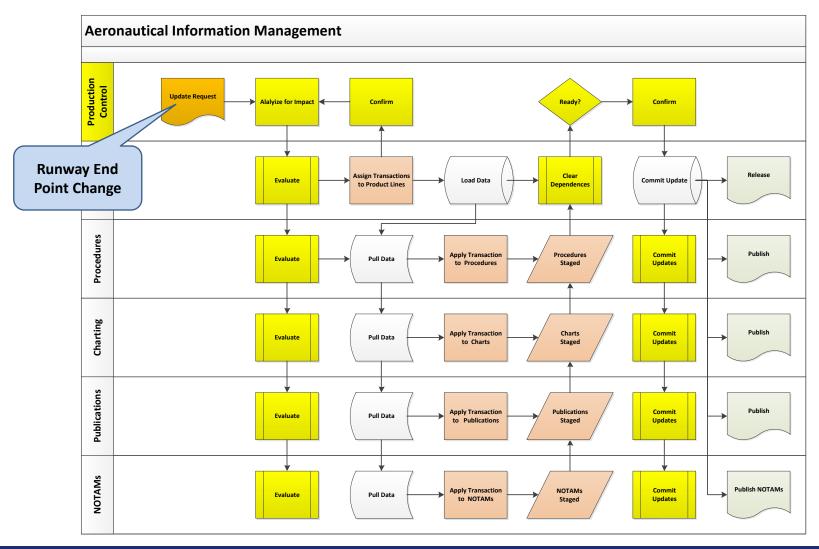
	Queue					
23 Aug 2019 1330	AIS	Submission	ABC	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	ABC	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	ABC	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Update DB	ABC	Element X	ANSP AIS (Tommy Ojo)	
23 Aug 2019 1445	AIS	Product Analysis	ABC	Element X	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	Chart B	Geo Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIS	Authority Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Temporality Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIP	AIP Inclusion Rule	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Chart B	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	AIP	Submission	ABC	Element X	AIS Submission Scenario	
23 Aug 2019 1445	Pub A	Evaluate	ABC	Element X	Product Mgr (Sam Oto)	Required by product
23 Aug 2019 1445	Pub A	Accept	ABC	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1448	Pub A	Apply Transaction	ABC	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1525	Chart B	Evaluate	ABC	Element X	Product Mgr (Jane Wi)	Not required by product
23 Aug 2019 1525	Chart B	Tolerance Rule Check	ABC	Element X	Rule Engine	No change from current view

Administrative Metadata: information to help manage a resource, such as when and how it was created, file type and other technical information, and who can access it

Structural Metadata: information on how the data was created

Resource: http://marciazeng.slis.kent.edu/metadatabasics/types.htm

Process Metadata



- The activities performed throughout the process
- ICAO Annex 15 requirements
 - Who did what, when?

- Create
- Read
- Update
- Delete

Activity Metadata Example

Metadata and Safety Oversight

Conduct surveillance

- What questions can be asked or answered?
- Are all the metadata questions being asked (who, what, when...)?
- What evidence can be collected?
- Is the metadata complete?
- Is the metadata retained?

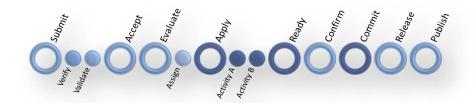
13

Thoughts...

Metadata:

- Is collected and maintained throughout process and delivery of aeronautical information
- Types are numerous, each having their own purpose and all are important
- Assures traceability of aeronautical data, information, products and services
- Relates to QMS assurance and monitoring

Questions and Discussion



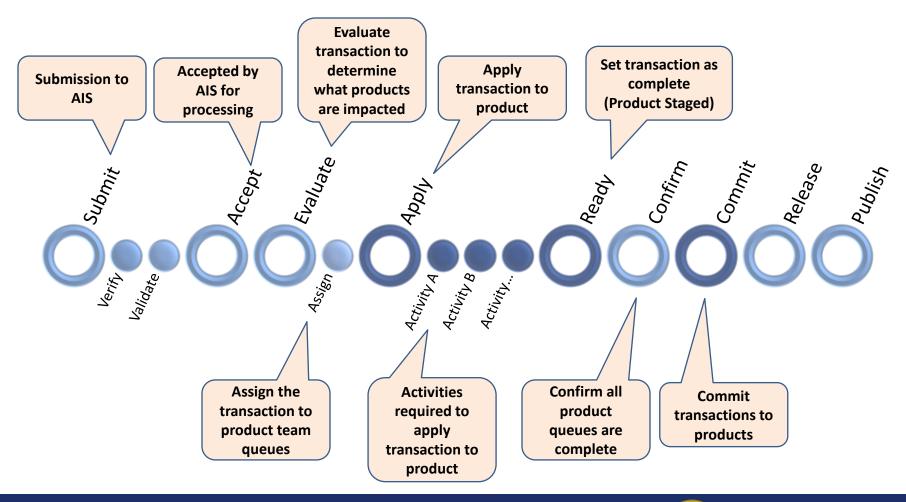
References

- ICAO Annex 15
- http://marciazeng.slis.kent.edu/metadatabasics/types.htm
- PANS-AIM/Data Catalog, Doc 10066

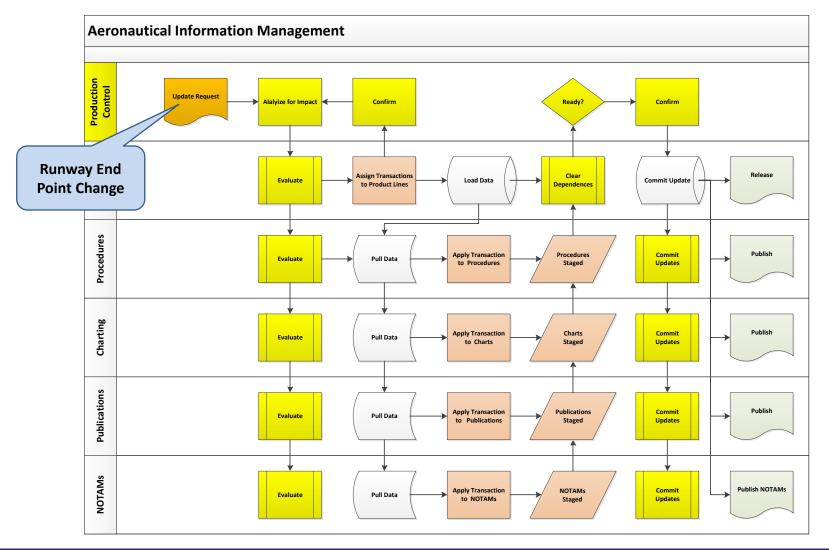
Understanding Metadata in Safety Oversight

Workshop Exercise

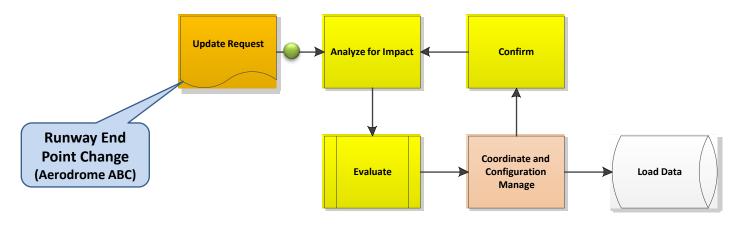
UNDERSTANDING ACTIVITY METADATA


Filter the Metadata Instructions

Date	▼ Queue	✓ Action
23 Aug 2019 1330	AIS	Submission
23 Aug 2019 1400	AIS	Accept
23 Aug 2019 1445	AIS	Evaluate
23 Aug 2019 1445	AIS	Update DB
23 Aug 2019 1445	AIS	Product Analysis
23 Aug 2019 1445	Chart B	Geo Rule Check
23 Aug 2019 1445	AIS	Authority Rule Check
23 Aug 2019 1445	Pub A	Temporality Rule Check
23 Aug 2019 1445	AIP	AIP Inclusion Rule
23 Aug 2019 1445	Pub A	Submission
23 Aug 2019 1445	Chart B	Submission
23 Aug 2019 1445	AIP	Submission
23 Aug 2019 1445	Pub A	Evaluate
23 Aug 2019 1445	Pub A	Accept
23 Aug 2019 1448	Pub A	Apply Transaction
23 Aug 2019 1525	Chart B	Evaluate


- Access the Sample Activity
 Metadata file in the
 Activities folder on the ICAO
 WACAF website drive
- Be ready to follow-along with presenter instructions

AIS Activity Workflow


(Hypothetical)

Production Control Example

Initial Metadata Generation

Timestamp	Queue	Action	What	Who	Remark
23 Aug 2019 1330	AIS	Submission	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Product Analysis	Element X	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	Pub A	Submission	Element X	AIS Submission Scenario	
23 Aug 2019 1445	Chart B	Submission	Element X	AIS Submission Scenario	

What's Next?

Timestamp	Queue	Action	What	Who	Remark
23 Aug 2019 1330	AIS	Submission	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Product Analysis	Element X	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	Pub A	Submission	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Chart B	Submission	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Pub A	Evaluate	Element X	Product Mgr (Sam Oto)	Required by product
23 Aug 2019 1445	Pub A	Accept	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1448	Pub A	Apply	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1525	Chart B	Evaluate	Element X	Product Mgr (Jane Wi)	Not required by product
23 Aug 2019 1525	Chart B	Dismiss	Element X	Product Mgr (Jane Wi)	

Learning Question

How could you identify all of the data features contained in Pub A?

Timestamp	Queue	Action	What	Who	Remark
23 Aug 2019 1330	AIS	Submission	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Product Analysis	Element X	AIS Software	2 Products affected (A and B)
23 Aug 2019 1445	Pub A	Submission	Element X	AIS Software	Submit for evaluation
23 Aug 2019 1445	Chart B	Submission	Element X	AIS Software	Submit for evaluation
23 Aug 2019 1445	Pub A	Evaluate	Element X	Product Mgr (Sam Oto)	Required by product
23 Aug 2019 1445	Pub A	Accept	Element X	Product Mgr (Sam Oto)	Accept as Update or Insert
23 Aug 2019 1448	Pub A	Apply	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1525	Chart B	Evaluate	Element X	Product Mgr (Jane Wi)	Not required by product
23 Aug 2019 1525	Chart B	Dismiss	Element X	Product Mgr (Jane Wi)	

Follow Along Activity Data Filters

- What updates were submitted in 2017?
- How many facilities had update requests?
- Were there any updates to facility ABD?
- How many updates affected each product line?

Date	✓ Queue	▼ Action	▼ Facility	√¹ What	▼ Who	▼ Remark
23 Aug 2019 1330	AIS	Submission	ABC	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	ABC	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	ABC	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Update DB	ABC	Element X	ANSP AIS (Tommy Ojo)	
23 Aug 2019 1445	AIS	Product Analysis	ABC	Element X	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	Chart B	Geo Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIS	Authority Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Temporality Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIP	AIP Inclusion Rule	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Chart B	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation

Tracking Scenarios and Rules

Date	▼ Queue	Action	▼ Facility	√i What	▼ Who	▼ Remark ▼
23 Aug 2019 1330	AIS	Submission	ABC	Element X	ABC Airport Authority (Jane Doe)	Submission by airport
23 Aug 2019 1400	AIS	Accept	ABC	Element X	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
23 Aug 2019 1445	AIS	Evaluate	ABC	Element X	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
23 Aug 2019 1445	AIS	Update DB	ABC	Element X	ANSP AIS (Tommy Ojo)	
23 Aug 2019 1445	AIS	Product Analysis	ABC	Element X	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	Chart B	Geo Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIS	Authority Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Temporality Rule Check	ABC	Element X	Rule Engine	
23 Aug 2019 1445	AIP	AIP Inclusion Rule	ABC	Element X	Rule Engine	
23 Aug 2019 1445	Pub A	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Chart B	Submission	ABC	Element X	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	AIP	Submission	ABC	Element X	AIS Submission Scenario	
23 Aug 2019 1445	Pub A	Evaluate	ABC	Element X	Product Mgr (Sam Oto)	Required by product
23 Aug 2019 1445	Pub A	Accept	ABC	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1448	Pub A	Apply Transaction	ABC	Element X	Product Mgr (Sam Oto)	
23 Aug 2019 1525	Chart B	Evaluate	ABC	Element X	Product Mgr (Jane Wi)	Not required by product
23 Aug 2019 1525	Chart B	Tolerance Rule Check	ABC	Element X	Rule Engine	No change from current view
23 Aug 2019 1525	Chart B	Dismiss	ABC	Element X	Product Mgr (Jane Wi)	
21 Aug 2019 1330	AIS	Submission	ABD	Element R	ABD Airport Authority	Submission by airport
21 Aug 2019 1400	AIS	Accept	ABD	Element R	ANSP AIS (Sara Tomo)	Received by AIS, enters workflow
21 Aug 2019 1445	AIS	Evaluate	ABD	Element R	ANSP AIS (Tommy Ojo)	Evaluated, No errors detected
21 Aug 2019 1445	AIS	Update DB	ABD	Element R	ANSP AIS (Tommy Ojo)	
21 Aug 2019 1445	AIS	Product Analysis	ABD	Element R	AIS Analysis Scenario	2 Products affected (A and B)
23 Aug 2019 1445	AIP	AIP Inclusion Rule	ABD	Element R	Rule Engine	
21 Aug 2019 1445	Pub A	Submission	ABD	Element R	AIS Submission Scenario	Submit for evaluation
21 Aug 2019 1445	Chart B	Submission	ABD	Element R	AIS Submission Scenario	Submit for evaluation
23 Aug 2019 1445	Chart B	Evaluate	ABD	Element R	Product Mgr (Sam Oto)	Required by product
23 Aug 2019 1445	Chart B	Accept	ABD	Element R	Product Mgr (Sam Oto)	
23 Aug 2019 1445	Chart B	Activity 1	ABD	Element R	Carto (Mike H)	Updated Location
23 Aug 2019 1445	Chart B	Activity 2	ABD	Element R	Carto QA (Mike K)	Verfied Location
23 Aug 2019 1448	Chart B	Apply Transaction	ABD	Element R	Product Mgr (Sam Oto)	Product is ready
23 Aug 2019 1448	Chart B	Commit	ABD	Element R	Automation	
23 Aug 2019 1525	Pub A	Evaluate	ABD	Element R	Product Mgr (Jane Wi)	Not required by product

Questions and Discussion

