Overview

• Components of the RCAM
• Using of the RCAM
• The Runway Condition Report
Objective

• Describe key elements of the RCAM
• Explain how to generate, downgrade or upgrade a RWYCC
• Describe how to use the RCAM to assess and report on runway surface condition
GRF Information Flow

Airport Operator
- Monitor & Assess the RSCs and changes
- RCAM
- RWYCCs
- RCR
- Upgrade/downgrade RWYCCs

Airport Operator

ANSP (AIS/ATC)
- SNOWTAM
- ATIS
- AIREP

Aircraft Operator
- Dispatch
- Pilots
- AIREP
A matrix allowing the assessment of the runway condition code, using associated procedures, from a set of observed runway surface condition(s) and pilot report of braking action.

The runway condition assessment matrix (RCAM)

<table>
<thead>
<tr>
<th>Runway condition code</th>
<th>Runway surface description</th>
<th>Downgrade assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DRY</td>
<td>Braking deceleration is normal for the wheel braking effort applied AND directional control is normal</td>
</tr>
<tr>
<td></td>
<td>FROST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WET (The runway surface is covered by any visible dampness or water up to and including 3 mm depth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLUSH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRY SNOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WET SNOW</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-10°C and lower outside air temperature:</td>
<td>Braking deceleration OR directional control is between Good and Medium</td>
</tr>
<tr>
<td></td>
<td>COMPACTED SNOW</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-10°C and lower outside air temperature:</td>
<td>Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced</td>
</tr>
<tr>
<td></td>
<td>WET ("slippery wet" runway)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRY SNOW or WET SNOW (any depth) ON TOP OF COMPACTED SNOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>More than 3 mm depth:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRY SNOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WET SNOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher than -1°C outside air temperature:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPACTED SNOW</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>More than 3 mm depth of water or slush:</td>
<td>Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced</td>
</tr>
<tr>
<td></td>
<td>STANDING WATER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLUSH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ICE ²</td>
<td>Braking deceleration is minimal to non-existent for the wheel braking effort applied OR directional control is uncertain</td>
</tr>
<tr>
<td>0</td>
<td>WATER ON TOP OF COMPACTED SNOW ²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRY SNOW or WET SNOW ON TOP OF ICE ²</td>
<td></td>
</tr>
</tbody>
</table>

2. icing conditions
- The method to be used by airport operators to report runway surface conditions when contaminated.
- Clearly identifies factors that influence aircrafts takeoff and landing performance, particularly braking performance.
- It relates these factors to RWYCC that can be used by flight crews to interpret the runway conditions and support their pre-landing and pre-departure assessments.
Downgrade assessment criteria

Provides the assessment criteria allowing the airport operator to further assess the runway and validate the RWYCC. It includes:

- The column to be used by the pilot to rate the estimated aeroplane braking performance on a given contaminant and estimate a runway braking action category based on six descriptions

- A report of braking action on the runway by a pilot, providing other pilots with an indication of the degree/quality of expected braking

The use of any available means of assessing runway slipperiness should be considered to support the decision for downgrading or upgrading RWYCC

<table>
<thead>
<tr>
<th>Downgrade assessment criteria</th>
<th>Pilot report of runway braking action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroplane deceleration or directional control observation</td>
<td>Pilot report of runway braking action</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Braking deceleration is normal for the wheel braking effort applied AND directional control is normal.</td>
<td>GOOD</td>
</tr>
<tr>
<td>Braking deceleration OR directional control is between Good and Medium.</td>
<td>GOOD TO MEDIUM</td>
</tr>
<tr>
<td>Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced.</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Braking deceleration OR directional control is between Medium and Poor.</td>
<td>MEDIUM TO POOR</td>
</tr>
<tr>
<td>Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced.</td>
<td>POOR</td>
</tr>
<tr>
<td>Braking deceleration is minimal to non-existent for the wheel braking effort applied OR directional control is uncertain.</td>
<td>LESS THAN POOR</td>
</tr>
</tbody>
</table>
Assessment criteria

The two columns are used to determine the correct RWYCC

- This column describes runway surface conditions and contaminants (least to most slippery) that are directly correlated to aeroplane takeoff and landing performance. Contaminants have different effects depending on their depth and outside air temperature.

- This column represents the RWYCC that is associated with the relevant runway surface description based on the type of contaminant on the runway, its depth and the outside air temperature.

A RWYCC is reported to each third of the runway assessed. The direction for listing the runway thirds shall be in the direction as seen from the lower runway designation number.
Airports operator need to assess and collect data on:

- The percentage of each runway third that is covered by contaminants
- The runway surface condition and type of contaminants
- The depth of the contaminants

Using of RCAM
The percentage of runway covered by contaminants

<table>
<thead>
<tr>
<th>Assessed per cent</th>
<th>Reported per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 – 25</td>
<td>25</td>
</tr>
<tr>
<td>26 – 50</td>
<td>50</td>
</tr>
<tr>
<td>51 – 75</td>
<td>75</td>
</tr>
<tr>
<td>76 – 100</td>
<td>100</td>
</tr>
</tbody>
</table>

- If 25 per cent or less area of a runway third is wet or covered by contaminant, a RWYCC 6 shall be reported.
- If the distribution of the contaminant is not uniform, the location of the area that is wet or covered by the contaminant is described in the plain language remarks part of the situational awareness section of the runway condition report.

Using of RCAM
Using of RCAM

Runway surface conditions

- There are four runway surface conditions in the RCAM:

 - Dry
 - Wet
 - Slippery wet
 - Contaminated runway
Runway surface conditions

• Dry

- A runway is considered dry if its surface is free from visible moisture and not contaminated within the area intended to be used.

- The RWYCC for a Dry Runway is 6

- A dry surface must be reported only when there is a need to report conditions on one or more of the other thirds

- A dry surface will be reported where the report is the last, final report that closes a period in which the runway was contaminated
Runway surface conditions

• Wet

- A runway is considered wet when it is covered by any visible dampness or water that is 3 mm or less in depth.
- The RWYCC for a Wet Runway is 5
- Wet runway assessments do not necessarily require direct observation of all affected pavements surfaces
- Credible evidence of wet conditions such as receiving reports of rain at the airport, can be used as a rationale for assigning wet RWYCCs.
Runway surface conditions

- Slippery wet
 - A wet runway may be slippery where the surface friction characteristics of a significant portion of the runway have been determined to be degraded.
 - Some contributing factors that can create such conditions include rubber buildup, groove failures/wear or pavement micro/macro textures.
 - The RWYCC for a Slippery Wet Runway is 3

Methods to determine that a runway is slippery wet may include a functional friction measurements, observation by aerodrome maintenance personnel, repeated reports by pilots and analysis of aeroplane stopping performance that indicates a substandard surface.
Runway surface conditions

- Contaminated Runway
 - Compacted snow
 - Dry snow
 - Frost
 - Ice
 - Slush
 - Standing water
 - Wet ice
 - Wet snow
Using of RCAM

Runway surface conditions

• Contaminated Runway

 - Mud, ash, sand and oil are also examples or reportable contaminants. However there is insufficient of varying data on their impact on aircraft performance.

 - Therefore, RCC are not reported for these contaminants – rather, they are reported in the plain language remark session of the RCR.

 - Ash, oil, sand and rubber contaminants should be reported without a measured depth, while the measured depth should be reported for mud.

 - An exception is rubber contamination, for which in service data indicates that an assumption of RWYCC 3 restores usual performance margins.
Using of RCAM

Runway surface conditions

- Contaminated Runway – Standing Water
 - Water of a depth more than 3 mm is defined as standing water
 - The RWYCC for Standing Water is 2
Using of RCAM

Contaminant depth

- Contamination depth significantly affects aircraft takeoff and landing performance, including stopping capability.
- Specifics contaminants with more that 3 mm have been found to significantly degrade aircraft takeoff and landing performance.
- The airport operator shall report the distribution of contaminant on the total maintained portion of the runway for the following contaminant types only:
 - Standing Water more that 3 mm
 - Slush
 - Dry Snow
 - Wet Snow
 - Wet Snow or Dry Snow on top of Compacted Snow
Using of RCAM

Contaminant depth

Table II-1-2. Depth assessment for contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Valid values to be reported</th>
<th>Significant change</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDING WATER</td>
<td>04, then assessed value</td>
<td>3 mm up to and including 15 mm</td>
</tr>
<tr>
<td>SLUSH</td>
<td>03, then assessed value</td>
<td>3 mm up to and including 15 mm</td>
</tr>
<tr>
<td>WET SNOW</td>
<td>03, then assessed value</td>
<td>5 mm</td>
</tr>
<tr>
<td>DRY SNOW</td>
<td>03, then assessed value</td>
<td>20 mm</td>
</tr>
</tbody>
</table>
Using of RCAM

Contaminant depth

- The depth is reported as a two or three-digit number representing the assessed depth in millimeters (mm) of the contaminant for each runway third.
- The assessment is based upon an even distribution within the runway thirds as assessed by trained personnel.
- If measurements are included as part of the assessment process, the reported values are still reported as assessed depths, as the trained personnel have placed their judgment upon the measured depths to be representative for the runway third.
- Where contaminant depth is not being reported, operator should indicate that no information exists by entering NR.
Reporting

- A RWYCC is reported for each runway third in the format of n/n/n.
- The percentage of the runway covered by contaminants, contaminant depth, and contaminant type should also be reported for each runway third.
- Runway thirds should reflect the entire usable pavement length of the runway, inclusive of displaced threshold.
- The direction for listing the runway thirds should be in the direction as seen from the lower runway designation number.
Runway Condition Report

- The RCR consists of two sections:
 - aeroplane take-off and landing performance calculations; and
 - situational awareness of the surface conditions on the runway, taxiways and aprons.

<table>
<thead>
<tr>
<th>Aeroplane performance calculation section</th>
<th>Situational awareness section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>Source</td>
</tr>
<tr>
<td>Aerodrome location indicator</td>
<td>ICAO Doc 7910, Location Indicators</td>
</tr>
<tr>
<td>Date and time of assessment</td>
<td>UTC time</td>
</tr>
<tr>
<td>Lower runway designation number</td>
<td>Actual runway (RWY)</td>
</tr>
<tr>
<td>RWYCC for each runway third</td>
<td>Assessment based upon RCAM and associated procedures</td>
</tr>
<tr>
<td>Per cent coverage contaminant for each runway third</td>
<td>Visual observation for each runway third</td>
</tr>
<tr>
<td>Depth of loose contaminant for each runway third</td>
<td>Visual observation for each runway third, confirmed by measurements when appropriate</td>
</tr>
<tr>
<td>Condition description (contaminant type) for each runway third</td>
<td>Visual observation for each runway third</td>
</tr>
<tr>
<td>Width of runway to which the RWYCCs apply if less than published width</td>
<td>Visual observations while at the RWY and information from local procedures/snow plan</td>
</tr>
<tr>
<td>Reduced runway length</td>
<td>NOTAM</td>
</tr>
<tr>
<td>Drifting snow on the runway</td>
<td>Visual observation while at RWY</td>
</tr>
<tr>
<td>Loose sand on the runway</td>
<td>Visual observation while at RWY</td>
</tr>
<tr>
<td>Chemical treatment on the runway</td>
<td>Known treatment application. Visual observation of residual chemicals on the runway</td>
</tr>
<tr>
<td>Snowbanks on the runway</td>
<td>Visual observations while at the RWY</td>
</tr>
<tr>
<td>Snowbanks on taxiway</td>
<td>Visual observations while at the taxiway (TWY)</td>
</tr>
<tr>
<td>Snowbanks adjacent to the runway penetrating level/profile set in the aerodrome snow plan</td>
<td>Visual observations while at the RWY confirmed by measurements when appropriate</td>
</tr>
<tr>
<td>Taxiway conditions</td>
<td>Visual observation, AIREP, reported by other aerodrome personnel, etc</td>
</tr>
<tr>
<td>Apron conditions</td>
<td>Visual observation, AIREP, reported by other aerodrome personnel, etc</td>
</tr>
<tr>
<td>State approved and published use of measured friction coefficient</td>
<td>Dependent upon the State set or agreed standard</td>
</tr>
<tr>
<td>Plain language remarks using only allowable characters in capital letters</td>
<td>Any additional operational significant information to be reported</td>
</tr>
</tbody>
</table>
Aeroplane performance calculation section

- **Aerodrome location indicator** *(mandatory)*: four-letter ICAO location indicator in accordance with Doc 7910, *Location Indicators*.
 - Format: nnnn
 - Example: GOBD

- **Date and time of assessment** *(mandatory)*: date and time (UTC) when the assessment was performed by the trained personnel.
 - Format: MMDDhhmm
 - Example: 09111357

- **Lower runway designation number** *(mandatory)*: a two- or three-character number identifying the runway for which the assessment is carried out and reported.
 - Format: nn[L] or nn[C] or nn[R]
 - Example: 09L
Runway Condition Report

Aeroplane performance calculation section

- Runway condition code for each runway third (*mandatory*): a one-digit number identifying the RWYCC assessed for each runway third. The codes are reported in a three-character group separated by a “/” for each third. The direction for listing the runway thirds shall be in the direction as seen from the lower designation number.
 - Format: n/n/n
 - Example: 5/5/2

Note: When transmitting information on runway surface conditions by ATS to flight crews, the sections are, however, referred to as the first, second or third part of the runway. The first part always means the first third of the runway as seen in the direction of landing or take-off.
Runway Condition Report

Aeroplane performance calculation section

- Per cent coverage contaminant for each runway third *(conditional. not reported for one runway third if it is dry or covered with less than 10 per cent)*: a number identifying the percentage coverage. The percentages are to be reported in an up-to-nine character group separated by a “/” for each runway third.
 - Format: \[n\]nn/[n]nn/[n]nn
 - Example: 25/50/100
 - NR/50/100 if contaminant coverage is less than 10% in the first third

With uneven distribution of the contaminants, additional information is to be given in the plain language remark part of the situational awareness section of the runway condition report. Where possible, a standardized text should be used.

Note.— When no information is to be reported, insert “NR” at its relevant position in the message to indicate to the user that no information exists (/NR/).
Aeroplane performance calculation section

- **Depth of loose contaminant:** dry snow, wet snow, slush or *standing water* for each runway third *(Conditional, reported for STANDING WATER)*: a two- or three-digit number representing the assessed depth (mm) of the contaminant for each runway third.
 - Format: [n]nn/[n]nn/[n]nn
 - Examples: 04/06/12 [STANDING WATER]

When the depth of the contaminants varies significantly within a runway third, additional information is to be given in the plain language remark part of the situational awareness section of the runway condition report.
Runway Condition Report

Aeroplane performance calculation section

- **Condition description for each runway third** *(mandatory)*: to be reported in capital letters using terms specified in 2.9.5 of Annex 14, Volume I. The condition type is reported by any of the following condition type descriptions for each runway third and separated by an oblique stroke “/”. (DRY, STANDING WATER, WET, …)
 - Format: nnnn/nnnn/nnnn
 - Example: WET/WET/WET

- **Width of runway to which the RWYCCs apply if less than published width** *(optional)*: the two-digit number representing the width of cleared runway in metres.
 - Format: nn
 - Example: 30

If the cleared runway width is not symmetrical along the centre line, additional information is to be given in the plain language remark part of the situational awareness section of the runway condition report.
Runway Condition Report

Situational awareness section

All individual messages in the situational awareness section end with a full stop sign. This is to distinguish the message from subsequent message(s).

- **Reduced runway length**: This information is conditional when a NOTAM has been published with a new set of declared distances affecting the LDA.
 - Format: Standardized fixed text
 - RWY nn [L] or nn [C] or nn [R] LDA REDUCED TO [n]nnn
 - Example: RWY 22L LDA REDUCED TO 1450.

- **Loose sand on the runway** *(optional)*:
 - Format: RWY nn[L] or nn[C] or nn[R] LOOSE SAND
 - Example: RWY 02R LOOSE SAND.

- **Chemical treatment on the runway** *(mandatory)*:
 - Format: RWY nn[L] or nn[C] or nn[R] CHEMICALLY TREATED
 - Example: RWY 06 CHEMICALLY TREATED.
Runway Condition Report

Situational awareness section

- **Taxiway conditions** *(optional)*:
 - Format: TWY [nn]n POOR
 - Example: TWY B POOR.

- **Apron conditions** *(optional)*:
 - Format: APRON [nnnn] POOR
 - Example: APRON NORTH POOR.

- **State-approved and published use of measured friction coefficient** *(optional)*:
 - Format: [State set format and associated procedures]
 - Example: [Function of State set format and associated procedures].
Runway Condition Report

Situational awareness section

- Plain language remarks using only allowable characters in capital letters (optional):
 - Format: Combination of allowable characters where use of full stop « . » marks the end of the message.
 - Allowable characters:
 - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 - 0 1 2 3 4 5 6 7 8 9
 - / [oblique stroke] “.” [period]“ ” [space]
Runway Condition Report (RCR) - Example

Complete information string

2.1.3.6 An example of a complete information string prepared for dissemination is as follows:

[COM header and Abbreviated header] (Completed by AIS)
GG EADBZQZX EADNZQZX EADSZQZX
170229 EADDYNYX
(SWEA0151 EADD 02170225
SNOWTAM 0151

[Aeroplane performance calculation section]
EADD 02170055 09L 5/5/5 100/100/100 NR/NR/NR WET/WET/WET SNOW
02170135 09R 5/4/3 100/50/75 NR/06/06 WET/SLUSH/SLUSH
02170225 09C 3/2/1 75/100/100 06/12/12 SLUSH/WET SNOW/WET SNOW

[Situational awareness section]
RWY 09L SNOWBANK R20 FM CL. RWY 09R ADJ SNOWBANKS. TWY B POOR. APRON NORTH POOR)
Thank You