Performance-based Decision-making Method

Olga De Frutos

Dakar/18 September 2017
GANP 2019

LAYERS

Level 1
Level 2
Level 3
Level 4

FRAMEWORK

Vision
Conceptual Roadmap
Performance Ambitions

ANP

BBBs
ASBU
PBA
ARCH.

Vol I
Vol II
Vol III
R&D Programmes

NATIONAL

National Responsibility
Proposed Template?

National Plans
Deployment
“Fall in love with the problem, not with the solution”
What this method entails?

“Several procedures for meeting the expectations of the aviation community by enhancing the performance of the Air Navigation System and optimizing allocation and use of the available resources”
Principles

• Strong focus on desired/required results
• Reliance on facts and data for decision making
• Collaborative justified decision-making
The way to success

• Commitment
• Agreement on goals
• Organization
• Human resources and knowledge/expertise
• Data collection, processing, storage and reporting;
• Collaboration and coordination; and
• Cost implications
The Method

- STEP 1: Scope, Context & General Ambitions and expectations
- STEP 2: SWOT Analysis/ set objectives
- STEP 3: Set of targets/ Calculation of needs
- STEP 4: Optimum solution identification
- STEP 5: Optimum solution deployment
- STEP 6: Results assessment
STEP 1: SCOPE, CONTEXT & AMBITIONS

• Context
 – 2019 Global Air Navigation Plan
 • Global Strategic Level: Performance Ambitions
 – Objective
 – ICAO KPAs
 – Design criteria
 • Global Technical Level: Generic Performance Objectives
 – Regional Air Navigation Plan
 • ANP Vol III
 • Specific Performance Objectives based on regional requirements
STEP 1: SCOPE, CONTEXT & AMBITIONS

• Scope
 – National Air Navigation Plan
 • Performance Targets: who, when and where
 • Make clear assumptions on what is “surrounding” it
 – National Development Plan
STEP 2: SWOT Analysis/ set objectives

• Operational analysis (baseline performance)
 – Data collection, process and analyze
 – Monitor current operations
 • KPIs (GANP 2016)
 – Traffic forecast
STEP 2: SWOT Analysis/ set objectives

• SWOT Analysis
 – Strengths, Weaknesses, Opportunities and Threats
 → Performance objectives
STEP 2: SWOT Analysis/ set objectives

• National level
 – National Performance Framework
 • Performance Objective
 • High level SWOT analysis

• Local Level
 – KPIs
 • National Performance Framework
 • Specific
 – Detailed SWOT analysis
Example

- Performance management process.
- Context:
 - Global Air Navigation Plan
 - AFI Regional Air Navigation Plan
 - Traffic growth, RPAs, airports embed in cities, military activity, weather,...
 - Multiple neighbors
Example

Scope:
- FIR, TMAs and airports in AIP.
- 25 years (5-year cycle).
- Safety, capacity, efficiency, predictability and environment.
Example

Performance objective:

“To increase capacity along with efficiency and predictability in order to respond to future traffic growth, while ensuring that there are no adverse impacts on safety nor environment.”
Example

- Operational analysis in FIRs, TMAs and airports within AIP:
 - Performance baseline
 - KPI02, KPI13, KPI04, KPI05, KPI08, KPI16, KPI09, KPI10, KPI06, KPI11, KPI01, KPI14, KPI15
 - SWOT analysis
Example

- Airport Y:
 - Scope limited to airside of the airport, including TMA. Airport terminal is out of scope.
 - Performance baseline
 - KPI02, KPI13, KPI16, KPI09, KPI10, KPI11, KPI01, KPI14, KPI15
 - Forecast
 - SWOT analysis
SWOT analysis:
- Strengths:
 - manpower
- Weaknesses:
 - 2 runways separate 300 m → dependent operations
 - HUB operations
 - Separation on final (absolute values and application)
- Opportunities:
 - New technology and procedures
- Threads:
 - Weather
 - Topography surrounding airport Y
 - Airport Y physical capacity restriction
STEP 3: TARGETS & NEEDS

• Agree & Prioritize performance objectives
 – Focus area within KPAs
 → Performance objectives
 – Prioritization
STEP 3: TARGETS & NEEDS

- **SMART** Objectives
 - **S**pecific
 - **M**easurable
 - **A**chievable
 - **R**elevant
 - **T**ime-bounded
STEP 3: TARGETS & NEEDS

• **SMART** Objectives
 - Specific
 - Measurable
 - Achievable
 - Relevant
 - Time-bounded

PERFORMANCE INDICATORS → ICAO KPIs Catalogue
STEP 3: TARGETS & NEEDS

- **SMART Objectives**
 - Specific
 - Measurable
 - Achievable
 - Relevant
 - Time-bounded

- **PERFORMANCE INDICATORS**
 - VALUE = f(baseline)

- **PERFORMANCE TARGETS**
 - BASELINE
 - NEEDS

- **SPEED PROGRESS**
Example

- Airport Y
- Focus area:
 - Capacity
 - Airport capacity
 - Runway capacity
 - Efficiency
 - Airport efficiency
 - Taxi in and out efficiency
- WHAT?
Example

- Airport Y
- WHAT?
 - Objective 1: to increase the airport acceptance rate while maintaining safety
 - Objective 2: to improve the efficiency of ground operations during heavy traffic time-periods, while maintaining safety and minimizing environmental impact.
Example

- Airport Y
- Performance targets
- Specific and measurable:
 - Objective 1: KPI09, KPI11
 - Objective 2: KPI02, KPI13, KPI16
Example

- Airport Y
- KPI09: Airport peak arrival capacity
 - Scheduling parameters for slot controlled airports
 - Airport Acceptance Rates (AAR)
<table>
<thead>
<tr>
<th>KPI ID</th>
<th>KPI Name</th>
<th>KPI09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>The highest number of landings an airport can accept in a one-hour time frame (also called declared arrival capacity, or airport acceptance rate)</td>
<td>Airport peak arrival capacity</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>Number of landings / hour</td>
<td></td>
</tr>
<tr>
<td>Variants</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Operations measured</td>
<td>The capacity declaration of an airport</td>
<td></td>
</tr>
<tr>
<td>Object(s) characterized</td>
<td>The KPI is computed for individual airports</td>
<td></td>
</tr>
<tr>
<td>Utility of the KPI</td>
<td>This KPI indicates the highest landing rate that an airport will accept, using the most favorable runway configuration under optimum operational conditions. The runways may or may not be the most constraining factor for airport capacity; at some airports the most constraining factor may be the terminal airspace, the taxiways, the number of gates, passenger handling capacity etc. The KPI is typically used for scheduling and ATFM purposes, and to develop capacity investment plans.</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Data requirement</td>
<td>Scheduling parameters for slot controlled airports Airport Acceptance Rates (AAR)</td>
<td></td>
</tr>
<tr>
<td>Data feed providers</td>
<td>Airports</td>
<td></td>
</tr>
</tbody>
</table>
| **Formula / algorithm** | At the level of an individual airport:
1. Select highest value from the set of declared arrival capacities
2. Compute the KPI: convert the value to an hourly landing rate, if the declaration is at smaller time intervals | |
| **References & examples of use** | Comparison of ATM-Related Operational Performance: U.S./Europe (June 2014)
CANSO Recommended KPIs for Measuring ANSP Operational Performance (2015) | |
Example

- Airport Y
- Performance targets
- Achievable, relevant and time bound
- KPI09: airport peak arrival capacity
 - Baseline
 - Runway system:
 - Declare capacity of the system runway 40 operations → Airport peak arrival capacity of the system runway: 20 arrivals/hour
 - Actual throughput: 25 operations
 - Typical busy hour demand of 50 operations
 - Two non independent runways separated by 305 m
 - Operated as a single runway (one runway for departures and one for arrivals)
 - Traffic growth forecast for the next 25 years: 8%
Example

- Airport Y
- KPI09: airport peak arrival capacity
 - Performance target:
 - It is decided to adopt the future typical busy hour demand as the capacity target. This results in:
 \[50 \times 1.08^{25} = 340\] operations \(\rightarrow\) 170 arrivals per hour
 - The best in class airport peak arrival capacity for two dependent runways is 60 operations, thus the limit of the infrastructure capacity of the airport to accommodate the forecast demand will be reached in 3 years
 - So the performance target for a short term will be limited by the infrastructure of the runways to 60 operations. A longer term solution, such as the construction of a new airport should be considered.
 - Airport peak arrival capacity of the system runway: 60 arrivals/hour
 - Performance needs:
 - Airport peak arrival capacity of the runway system: 60-40=20 arrivals/hour
Example

- Airport Y
- KPI11: AIRPORT PEAK CAPACITY UTILIZATION
 - For each arriving flight:
 - Actual landing time (ALDT)
 - Estimated landing time (ELDT) (from flight plan)
 - For each time interval:
 - Declared landing capacity of the airport
<table>
<thead>
<tr>
<th>KPI ID</th>
<th>KPI11</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPI Name</td>
<td>Airport arrival capacity utilization</td>
</tr>
<tr>
<td>Definition</td>
<td>Airport arrival throughput (accommodated demand) compared to arrival capacity or demand, whichever is lower</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>%</td>
</tr>
<tr>
<td>Variants</td>
<td>Variant 1: IFR arrivals only</td>
</tr>
<tr>
<td>Operations measured</td>
<td>The number of unaccommodated landings at an airport</td>
</tr>
<tr>
<td>Object(s) characterized</td>
<td>The KPI is computed for individual airports</td>
</tr>
<tr>
<td>Utility of the KPI</td>
<td>This KPI assesses how effectively arrival capacity is managed by the ANSP. It is a measure of accommodated demand, compared to the available capacity of the airport, irrespective of the delay incurred by arriving traffic. Seen in another way, it captures the "missed" arrival slots. At congested airports, the KPI relates the throughput to the declared capacity. At uncongested airports (or airports without declared capacity) the KPI relates the throughput to the unconstrained demand based on flight plans.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Time interval at which to perform the most granular calculations. Recommended value: 15 minutes.</td>
</tr>
<tr>
<td>Data requirement</td>
<td>For each arriving flight:</td>
</tr>
<tr>
<td></td>
<td>- Actual landing time (ALDT)</td>
</tr>
<tr>
<td></td>
<td>- Estimated landing time (ELDT) (from flight plan)</td>
</tr>
<tr>
<td></td>
<td>For each time interval:</td>
</tr>
<tr>
<td></td>
<td>- Declared landing capacity of the airport</td>
</tr>
<tr>
<td>Data feed providers</td>
<td>Airports</td>
</tr>
<tr>
<td>Formula/algorithm</td>
<td>For each time interval:</td>
</tr>
<tr>
<td></td>
<td>1. Compute the throughput: count the number of actual landings based on ALDT</td>
</tr>
<tr>
<td></td>
<td>2. Compute the demand: count the number of estimated landings based on ELDT</td>
</tr>
<tr>
<td></td>
<td>3a. if demand >= capacity: utilization = throughput / capacity</td>
</tr>
<tr>
<td></td>
<td>3b. if demand < capacity: utilization = throughput / demand</td>
</tr>
<tr>
<td></td>
<td>At aggregated level (longer time periods):</td>
</tr>
<tr>
<td></td>
<td>4. Compute the KPI: sum(utilization*demand) / sum(demand)</td>
</tr>
<tr>
<td>References & examples of use</td>
<td>CANSO Recommended KPIs for Measuring ANSP Operational Performance (2015)</td>
</tr>
</tbody>
</table>
Example

- Airport Y
- KPI11: airport arrival capacity utilization
 - Baseline
 - Runway system:
 - Declare capacity of the system runway 40 operations → Airport peak arrival capacity of the system runway: 20 arrivals/hour
 - Actual throughput: 25 operations
 - Typical busy hour demand of 50 operations
 - Two non independent runways separated by 305 m
 - Operated as a single runway (one runway for departures and one for arrivals)
 - Traffic growth forecast for the next 25 years: 8%
Example

- **Airport Y**
- **KPI11: airport arrival capacity utilization**
 - **Performance target:**
 - It is decided to adopt the future typical busy hour demand as the capacity target. This results in:

 $50 \times 1.08^{25} = 340$ operations \rightarrow 170 arrivals per hour
 - The best in class airport peak arrival capacity for two dependent runways is 60 operations, thus the limit of the infrastructure capacity of the airport to accommodate the forecast demand will be reached in 3 years
 - In this case, within in 3 years the capacity is expected to reach the demand and the target in this case will be set in 1, so the throughput to be equal to the demand and the capacity.
 - **Airport arrival capacity utilization of the system runway:** 100%
 - **Performance needs:**
 - Airport arrival capacity utilization of the runway system: $1 - 25/40 = 0.375 = 37.5\%$
STEP 4: IDENTIFICATION OPT. SOLUTION

• Assessment of the SWOT analysis
 – Dominant factors:
 main constraints/opportunities
 → selection and prioritization of opportunities and issues
STEP 4: IDENTIFICATION OPT. SOLUTION

• List of options
 – High-level strategy
 – Operational concept
 – Technical enablers
 – Baseline
 – Availability
 – Safety Assessment
 – Human Factors Assessment
 – Assessment of expected performance
STEP 4: IDENTIFICATION OPT. SOLUTION
STEP 4: IDENTIFICATION OPT. SOLUTION

• Make decisions
 – Information available
 • Scope
 • Performance objectives and targets
 • Assessment of SWOT analysis
 • List of solutions (ASBUs)
 • Safety Assessment, HP Assessment, CBA and Environment Impact Assessment
 – Single optimum solution or a roadmap of optimum solutions
Example

- Airport Y
- Airport capacity
 - KPI09: Airport Peak Arrival Capacity
 - KPI11: Airport Arrival Capacity Utilization
Example

- SWOT analysis:
 - Strengths:
 - manpower
 - Weaknesses:
 - 2 runways separate 300 m → dependent operations
 - HUB operations
 - Separation on final (absolute values and application)
 - Opportunities:
 - New technology and procedures
 - Threads:
 - Weather
 - Topography surrounding airport Y
 - Airport Y physical capacity restriction
STEP 3: IDENTIFICATION OPT. SOLUTION
Example

* Airport Peak Arrival Capacity, the highest number of landings an airport can accept in a one-hour time frame (also called declared arrival capacity, or airport acceptance rate).
Example

- Separation on final:
 - B0 WAKE:
 - RECAT
 - B0 ASEP
 - VSA
- Number of runways used simultaneously
 - B0 WAKE
 - WIDAO
- Aircraft sequencing
 - B0 RSEQ
 - AMAN
Example

COST

PERFORMANCE BENEFIT

VSA

AMAN

WIDAO

RECAT
Example

- Associated Safety Assessment
- Associated Human Factors Assessment
- Associated Environmental Impact Assessment
STEP 3: IDENTIFICATION OPT.

SOLUTION

![Diagram of GANP Blocks, ASBU modules, Influence diagram, Elements, Procedures, Ground systems, Avionics, Standards, Approval/Certification, Human Resources, and Stakeholders.](image)
Airport Arrival Capacity Utilization, airport arrival throughput (accommodated demand) compared to arrival capacity or demand, whichever is lower.

- APRON
- TAXIWAY
- RUNWAY
- WEATHER (Low visibility conditions)
- NOISE AND ENVIRONMENTAL CONSTRAINTS
- ENROUTE
 - TMA
 - TAXIWAY
 - APRON
 - TERMINAL PAX
- CONSTRAINTS (Congestion, propagation of delays)
- PEAK ARRIVAL THROUGHPUT*
- AIRPORT PEAK ARRIVAL CAPACITY
- DEMAND

* The actual number of landings at an airport.
Example

- Weather
 - BO APTA:
 - GNSS+ BaroVNAV
 - GNSS+GBAS
 - GNSS+SBAS

- Topography
 - BO FRTO
 - Airspace design based on PBN
Example

COST

PERFORMANCE BENEFIT

SBAS

GNSS/BNAV

PBN

GBAS
Example

- Associated Safety Assessment
- Associated Human Factors Assessment
- Associated Environmental Impact Assessment
ELEMENT OVERVIEW

<table>
<thead>
<tr>
<th>Element ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAKE-B0/1</td>
<td>Wake turbulence separation minima based on six aircraft categories</td>
</tr>
<tr>
<td>APTA-B0/1</td>
<td>PBN Approaches (with basic capabilities)</td>
</tr>
<tr>
<td>APTA-B0/2</td>
<td>PBN SID and STAR procedures (with basic capabilities)</td>
</tr>
<tr>
<td>APTA-B0/3</td>
<td>Cat I Precision Approach Procedures</td>
</tr>
<tr>
<td>APTA-B0/4</td>
<td>PBN transitions to/from xLS (with basic capabilities)</td>
</tr>
</tbody>
</table>
STEP 5: DEPLOYMENT OF THE SOLUTION

• Execution phase
 – Planning
 – Implementation
 • National mechanism for tracking the implementation of the elements
 – Benefits
Example

- Enablers
- Responsible stakeholders for implementation
- Project Management
 - Monitor Progress on implementation: Mechanism for tracking implementation
- Deployment packages
 - Per element
 - Training, Seminars, WS, TA, SIP,...
STEP 6: ASSESSMENT OF RESULTS

• Continuously assess performance
• Monitor progress of implementation
• Review actually achieved performance
 – Update performance gaps

→ +(Step 1&2)= PERFORMANCE MONITORING AND REVIEW
STEP 6: ASSESSMENT OF RESULTS

- Tasks in the PMR:
 - Data collection
 - Data publication
 - Data analysis
 - Formulation of conclusions; and
 - Formulation of recommendations.
STEP 6: ASSESSMENT OF RESULTS

• Data collection
 – Automatic Data Collection
 – Manual data reporting (electronic or paper)

• For each KPI:
 – information needs;
 – suppliers of data;
 – information disclosure by data suppliers; and
 – manage the data feeds on an ongoing basis.
STEP 6: ASSESSMENT OF RESULTS

• Data access and publication
 – Audience:
 • Performance specialists
 – Specific data (as much granularity as possible)
 • People with a generally high level interest in ATM performance
 – High-level performance indicator
STEP 6: ASSESSMENT OF RESULTS

• Data Analysis
 – Quality of the data
 – Data analysis
 • Big picture
 • Cause-effect analysis for results

→ New performance objectives, performance indicators and data needs.
STEP 6: ASSESSMENT OF RESULTS

- Formulation of conclusions
 - Performance objectives
- Formulation of recommendations
 - ATM community expectations
Example

- Data collection at a national level
- Report annual performance data to the PIRGs Objective: Monitor improvement performance of the system
 - Tool: ANRF/ Dashboards
 - ICAO to publish Air Navigation Report based on this data
 - ICAO to review global performance objectives base on the results
- Cycle to start again
STEP 1: SCOPE, CONTEXT AND AMBITIONS

STEP 2: SWOT ANALYSIS/ SET OBJECTIVES

STEP 3: SET TARGETS/ CALCULATION NEEDS

STEP 4: SOLUTION IDENTIFICATION

STEP 5: OPTIMUM SOLUTION DEPLOYMENT

STEP 6: RESULTS ASSESSMENT

GLOBAL FRAMEWORK

REGIONAL FRAMEWORK

LOCAL FRAMEWORK

NO COUNTRY LEFT BEHIND