Airbus Prosky Thomas Bernstein

GAIRBUS

ICAO Workshop

Study Case: Kalibo airport

ICAO AFPP Workshop 3rd – 6th November 2015 Nairobi

Objective

Objective of the Study Case:

To apply the ICAO 9906 steps and Methodology to a concrete case

- To go deeper in a concrete case, by analyzing & identifying:
 - ✓ The existing airport procedures Potential issues and ways of improvement
 - \checkmark Which PBN Nav Spec may be used to improve the existing procedures
 - ✓ Stakeholders Roles & Responsibilities

Kalibo airport is located in Philippines

Airport surrounded by:

- North/North East: Sea
- West/South West: Mountains

Airport surrounded by:

- North/North East: Sea
- West/South West: Mountains

Kalibo airport – Main features

- □ VFR/IFR traffic
- Non Radar Environment
- Traffic flow:
 - About 25-30 aircraft per day
 - Mostly Airbus A320 aircraft (80%) and 737-800 (from Russia and Taipei), ATR and Dash Q400

- Existing procedures (see AIP) :
 - VOR/DME RW23
 - LOC RW23 : Not in service
 - Circling RW05

Kalibo airport – Study case

ATC

- Kalibo: TWR + APP + Coordinator
- Mainly flights from Manila, Taipei, Russia (North, North West of Kalibo)
- Coordination between:
 - Manila ACC
 - Mactan ACC
 - Kalibo ATC

- Starting point of the "Future Project"
- \rightarrow Why looking at this airport?

Authorized material:

✓ AIP

✓ Weather data

AIP

C AIRBUS ProSky S.A.S. All rights reserved. Confidential and proprietary documer

Page 9

Weather data

Month of yoor	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
wonth of year	01	02	03	04	05	06	07	08	09	10	11	12	1-12
Dominant Wind dir.	r	٢	٢	*	*	1	1	1	1	1	٢	r	٢
Wind probability	63	49	45				26	35	27		31	56	33
>= 4 Beaufort (%)				22	6	18	20		27	19	51		
Average													
Wind speed	13	11	11	9	6	8	9	10	9	8	8	12	9
(kts)					-								
Average air temp. (°C)	27	27	28	29	- 30	29	29	28	28	29	29	28	28

Wind direction distribution in (%) $_{Year}$

□ Identification of potential :

- Operational issues (on both runways)
- Safety issues
- AIP and existing procedure:
 - Give your analyse and feedback?
 - Ways of potential :
 - Operational improvement
 - Safety improvement

- □ Identification of potential :
 - Operational issues :
 - ✓ Minima ?
 - \checkmark Traffic separation ?
 - ✓ Payload ?
 - ✓ Terrain Awareness triggered ?
 - \checkmark Fuel consumption ?
 - ✓ Navaids not reliable / Failure ?
 - Safety issues :
 - ✓ Procedure not coded, higher crew workload
 - Circling: Visual Approach and manual flying Does not facilitate fully stabilized approach

□ Who should be involved?

U Who may provide operational feedback and recommendations?

- □ Who should be involved?
- □ Who may provide operational feedback and recommendations?
- CAA to establish FORMS for stakeholder for send a request
- \rightarrow Outputs
 - GO / NO GO?
 - Preliminary Design/Proposal of procedure type
 - CAA/ANSP Project Managers identified / Focal Point in stakeholders identified
 - Tentative planning / Resources / Validation means (if required) identified
- \rightarrow Stakeholders
 - CAA, ANSP, ATC, Airport Authority, Operators, local communities etc

Step 2 – Data Collection

Which data?

Step 2 – Data Collection

- Which data?
 - ✓ Data collected in the Step 1 Initiation
 - Operational / Safety Feedback
 - Operators
 - ATC

✓ In addition, all relevant data for Procedure Design purpose should be gathered:

- Runway, obstacles / Data Survey
- Controlled airspace
- Restricted airspace
- Airways
- Existing procedure
- Entry/Exit points
- Noise sensitive area
- Radar/Non Radar
- Atmospheric conditions / Turbulence area

Designations RWY NR	TRUE BRG	Dimensions of RWY	Strength (PCN) and surface of RWY and SWY	THR coordinates RWY end coordinates THR geoid undulation	THR elevation and highest elevation of TDZ of precision APP RWY
1	2	3	4	5	6
05	049º GEO 050º MAG	2187M X 45M	PCN 47 R/B/W/U ASPH	114025.8953N 1222208.1095E	09.039M/29.655FT
23	229º GEO 230º MAG	2187M X 45M	PCN 47 R/B/W/U ASPH	114110.1550N 1222259.5220E	05.771M/18.934FT

RPVK AD 2.12 RUNWAY PHYSICAL CHARACTERISTICS

Using all previous gathered data, a Conceptual Design maybe drafted

✓ RW23

✓ RW05

Using all previous gathered data, a Conceptual Design maybe drafted

✓ RW23

- \checkmark Proposed solution ?
- ✓ Nav Spec?
- ✓ Proposed Design?

- Reminder of RW23 Existing procedures
 - ✓ VOR/DME
 - Reliability of Ground Navaid?
 - NDB coding?
 - ✓ RNP procedure
 - No Ground Navaid
 - Coded in NDB (ARINC424)

✓ Which Nav Spec? Which Design?

Non Radar Environment

RNP Procedure required (No RNAV)

Non Radar Environment

- ✓ RNP Procedure required (No RNAV)
- ✓ RNP-APCH approach
 - Basic capability for most aircraft type
 - Basic crew training
 - Fully coded procedure in NDB
 - LNAV & LNAV/VNAV minima

Doc 9613 AN/937 S. OACI-Margo

Performance-based Navigation (PBN) Manual

- TMA with several Entry Points
- STARs design to connect Entry Points to IAFs

Step 3 – Conceptual Design – RW23 - STARs

- RNP1 STARs
- 2 IAFs
 - BARRY
 - ANDRE

Step 3 – Conceptual Design – RW23 - Approach

- RNP-APCH
- T-bar concept Approach over the sea (No limiting obstacles for design)
- 2 IAFs
 - BARRY
 - ANDRE
- ICAO 8168 compliant
 - TF-TF legs
 - Straight Final segment
 - (Aligned with the runway)
 - Missed Approach toIAF ANDRE & Holding

Step 3 – Conceptual Design – RW23 - Approach

- Straight Final segment aligned with the runway
- Final segment: 3° VPA (Baro-VNAV approach Not temperature compensated)
- MAPT collocated with RWY Threshold
- Missed approach to IAF ANDRE
- LNAV & LNAV/VNAV minima

Step 3 – Conceptual Design – RW23 - Approach

- Fully coded STARs & Approach in NDB
- Lateral & Vertical Guidance

FROM		OVS	01 ++
T-P	UTC 0305	SPD/	FL100
(DECEL)	BRG13 0312	9° 12 250/	FL070
PEXAN	TRK14 0313	189/	FL070
SR408	0317	- /	3000
RNV16L-2 SR406	0318	183/	1788
DEST LGSR16L	UTC 0320	DIST 40	EF08
			† ↓

Using all previous gathered data, a Conceptual Design maybe drafted

✓ RW23

✓ RW05

Using all previous gathered data, a Conceptual Design maybe drafted

✓ RW05

- \checkmark Proposed solution ?
- ✓ Nav Spec?
- ✓ Proposed Design?

RW05

High Terrain located West /South West of Kalibo

Airport surrounded by:

- North/North East: Sea
- West/South West: Mountains

- Straight Initial / Intermediate segment aligned with the runway
- Initial / Intermediate segment over high terrain

- Initial segment MOCA = 5100ft
- FAF at 1800ft
- 3300ft to descend in Intermediate segment (3.5NM), i.e. 15% Descent Gradient...

- Initial segment MOCA = 5100ft
- FAF at 1800ft
- 3300ft to descend in Intermediate segment (3.5NM), i.e. 15% Descent Gradient...

- Smooth descent gradient managed by Airbus/Boeing aircraft # 4% (250ft/NM) in clean configuration
- ✓ 15% Descent Gradient is not acceptable

Proposal 1 not adequate

- Long Final Segment (12NM)
- FAF at 4500ft
- VPA 3.5°
- SDF 2150ft

■ VPA 3.5°

- Baro-VNAV approach Not temperature compensated
- Temperature may be high in Philippines and resulting VPA may reach 4°!

- Such high VPA should require specific test depending on the aircraft type :
 - Energy management
 - TAWS reactive mode High descent rate in Final segment

■ VPA 3.5°

- Baro-VNAV approach Not temperature compensated
- Temperature may be high in Philippines and resulting VPA may reach 4°!

Proposal 2 not adequate

- Initial Segment from North direction
- Minimum Intermediate segment length = 3.5NM (stabilization distance)
- MOCA of Initial segment too high, does not permit smooth descent gradient

North Arrival

- Initial Segment from North direction
- Minimum Intermediate segment length = 3.5NM (stabilization distance)
- MOCA of Initial segment too high, does not permit smooth descent gradient

Proposal 3 not adequate

- Final segment with 15° offset (only authorized for LNAV, not applicable to Baro-VNAV)
- Does not permit to collocate MAPT and Runway Threshold
- Final not align with the runway
- Does not permit fully stabilized approach
- Not applicable to Baro-VNAV approach
- Not recommended

- Straight Final segment
- Intermediate segment:
 Offset at FAF
 (Baro-VNAV: 15° max
- LNAV only: 30° max)
- FAF 2400ft
- Final VPA 3.2°

Proposal 5 adequate

- Straight Final segment
- Intermediate segment:
 Including RF turn connected to FAF
- FAF 2100ft
- Final VPA 3.1°

Step 4: Stakeholders review

	US
Project Specificatio	ns

Once approved by the below persons, this document is the reference for the detailed design and validation phase (execution phase).

Written by: Checked by: Approved by: Approved by: Approved by: Approved by:

Role / Responsibilities

- □ CAA/ANSP to organize "Kick Off Meeting"
- CAA to provide the Regulation to apply

□ CAA/ANSP to produce the "Technical Specification" (Document gathering all assumptions, organization, planning, conceptual design etc)

Step 5 to 6 – Apply Criteria & Documentation

Role / Responsibilities

Procedure Designer to perform the Detailed Design As per Technical Specification document and regulation

□ CAA to provide the Regulation to apply

□ It is the State's responsibility to define the minimum period of time during which this documentation must remain available

Step 7 – Safety Assessment

- Provide the Safety Assessment responsible/Organisation
- Severity/Likelihood/Risk Matrix published by the State
- □ Validate/Approve the Safety Assessment
- □ Audits (all mitigation means should be stated and followed-up)

Step 8 & 9 – Validation & Consult Stakeholders

Step 10 - Approval

Step 11 to 13 - Publication

- □ ANSP/AIS to produce draft charts
- The publication of the IFP and supporting data is normally a State responsibility.

In some situations, it is possible that the publication may be delegated to another entity

Step 14 to 16 – After Publication

Any Questions?

