Departure procedure : turn at Altitude

1 Reminder

2 Objective

- Compute PDG of departure

The departure protection is provided below

| | PANS-OPS Flight Procedure Design Training Course for CAAs |
| :---: | :---: | :---: |

3 Data

- Aircraft categories : A and B;
- THR elevation : 200 ft (61 m);
- Temperature deviation : ISA $+15^{\circ}$
- All obstacles
: Elevation of top in meter
- Magnetic variation $: 0^{\circ}$
- Runway heading $: 180^{\circ} / 360^{\circ}$
- VOR/DME NTS : on the left side of the RWY
- Distances:
- DER-O5: 1852 m

4 Departure Description

"Climb \qquad at 1 000ft turn right to LUC."

5 Tasks

- Assess obstacles in turn initiation area ;
- Assess obstacles in turn area and provide the applicable PDG for obstacles 04 and 06 .

Obst	Alt (m)	$\mathbf{H (m)}$	dr*(m)	do (m)
O4	342	281	7238	5300
O6	320	259	4700	1300

6 Obstacle in turn initiation area

Method:

a. Compute position of the TNA;
b. Check if the obstacles located in the turn initiation area meet the criteria associated with the TNA value
c. Check if MOC is sufficient

6.1 Position of the $X_{\text {TNA }}$

Distance to reach 1000 ft :

$$
D=((1000-200) * 0.3048-5) / 0.033=7238 \mathrm{~m}
$$

Next step : Check if the obstacles located in the turn initiation area meet the criteria associated with the TNA value.

Obstacle	Altitude (m)	Height (m)	MOC (m)	Minimum TNA (m(ft)
$\mathbf{0 5}$	91	30	75	$91+75=166 \mathrm{~m}(431)$

Comment:

TNA (1000ft) is higher than min TNA for Obstacle 05

6.2 Check if MOC is appropriate

2 Methods:
a. Using the OIS
b. Comparing Height of Aircraft with Obstacle + MOC

6.2.1 Using OIS

Hois $=5+2.5 \%^{*} 1852=51 \mathrm{~m}$ while height of obstacle is 30 m
Conclusion: OIS is not penetrated and then
$P D G=2.5 \%+0.8 \%=3.3 \%$.

6.2.2 Comparing Height of Aircraft with Obstacle + MOC

Obst.	Alt (m)	Height (m)	do (m)	MOC (m)	Obst + MOC (m)	$\mathbf{H}_{\mathrm{A} / \mathrm{C}}(\mathbf{m})$
$\mathbf{O 5}$	91	30	1852	$0.8 \%^{*} 1852=15$	$30+15=45 \mathrm{~m}$	$5+3.3 \%^{*} 1852=66 \mathrm{~m}$

Conclusion:

$H_{A / C}>O b s+M O C$ and then, $P D G=3.3 \%$

7 Obstacle assessment in turn area

Reminder : Distance to reach $1000 \mathrm{ft}=7238 \mathrm{~m}$

Obst	Alt (m)	$\mathbf{H (m)}$	$\mathbf{d r}^{*}(\mathbf{m})$	do (m)	MOC (m)	$\mathbf{H}_{\mathrm{A} / \mathrm{C}}>$ Obst + MOC ?

Conclusion:

Obs $+M O C>H_{A / C}>$ and then, $P D G=3.3 \%$ is not convenient

