

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

PANS-OPS Flight Procedure Design Training for CAAs

23 August – 03 September 2021

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

02 – Nominal Path

(Doc. 8168, Vol. 2, Part III, Section 2)

- 1. Objective
- 2. Limits of segments
- 3. Minimum length
- 4. Descent gradient calculation
- 5. ARINC 424 coding
- 6. Initial approach constraints
- 7. Intermediate approach constraints
- 8. Final approach constraints
- 9. Missed approach constraints
- **10. Procedure altitude concept**

Define the conceptual path according to data collected

Know how:

- To calculate minimum length of a segment;
- How to calculate the descent gradient;
- The different constraints associated to each segment:
 - Speed;
 - Turn angle;
 - Bank angle;
 - MOC.

Define procedure altitude at a Waypoint;

C Know:

The "draft" coding associated with the nath

The "draft" coding associated with the path .

© 2021, African Flight Procedure Programme

Limits of segments

5

Limits of segment

African Flight Procedure Programme (AFPP)

Waypoints

Define:

- **Function** e.g. IAF, IF, FAF, MAPT, beginning of a STAR...
- Turning point;
- Speed or altitude constraint;
- **Reporting point for ATC purpose.**
- **•** Number of waypoint should be limited to a minimum:
 - Twithin a straight segment no more than 2 additional waypoints:
 - These additional waypoints are fly-by waypoints.

Limits of segment

African Flight Procedure Programme (AFPP)

Waypoints

Туре	Full name	Fly-by	Fly-over 📀	
IAF	Initial Approach Fix	\checkmark	\checkmark	
IF	Intermediate Approach Fix	\checkmark		
FAP/FAF	Final Approach Point/Fix			
MAPt	Missed Approach Point		\checkmark	
MAHF	Missed Approach Holding Fix			
HF	Holding Fix		\checkmark	
AWP	Arrival WayPoint			
DWP	Departure WayPoint © 2021, African Flig	ght Procedure Programme	7	

© 2021, African Flight Procedure Programme

Stabilization distances are necessary

G Segment shall be long enough:

To allow aircraft to perform turn and stabilization:

Turn stabilization distance.

"Where no turn is required, to achieve the constraint at the waypoint.

Minimum length

African Flight Procedure Programme (AFPP)

8

African Flight Procedure Programme (AFPP)

Turn initiation distance

African Flight Procedure Programme (AFPP)

Minimum Stabilization Distance (MSD)

African Flight Procedure Programme (AFPP)

© 2021, African Flight Procedure Programme

African Flight Procedure Programme (AFPP)

Table III-2-1-4.Minimum stabilization distance between flyover waypoints(SI units, 15° bank angle)

Course							True a	irspeed	[(km/h))					
change*	< or =	260	200	200	220	240	260	280	100	110	100	520	560	600	640
(Degrees)	240	200	200	500	520	540	500	300	400	440	400	520	500	000	040
50	3.9	4.5	5.2	5.9	6.7	7.5	8.3	9.2	10.1	12.1	14.3	16.7	19.2	22.0	24.9
55	4.2	4.9	5.6	6.4	7.2	8.0	9.0	9.9	10.9	13.1	15.5	18.1	20.8	23.8	27.0
60	4.5	5.2	6.0	6.8	7.7	8.6	9.6	10.7	11.8	14.1	16.7	19.4	22.4	25.6	29.1
65	4.8	5.6	6.4	7.3	8.2	9.2	10.3	11.4	12.6	15.1	17.9	20.8	24.0	27.5	31.1
70	5.1	5.9	6.8	7.7	8.8	9.8	11.0	12.1	13.4	16.1	19.0	22.2	25.6	29.3	33.2
75	5.4	6.3	7.2	8.2	9.3	10.4	11.6	12.9	14.2	17.1	20.2	23.6	27.2	31.1	35.3

African Flight Procedure Programme (AFPP)

Phase of flight	Minimum Distance to waypoint (D)*
En-route More than 30 NM ARP	5.0 NM
STARs, initial within 30 NM ARP	5.0 NM
SIDs, initial within 15 NM ARP and final approach	1.5 NM
Missed approaches and SIDs within 30 NM ARP	3.0 NM

*When the stabilization distance is greater than D, D is equal to the stabilization distance.

Descent gradient calculation

Path Terminator concept

□ Transform procedures into coded flight path

- **Path terminator:**
 - Set of two alphabetic characters;
 - **PT** instructs how to navigate from a starting point or condition:
 - to a specific point;
 - or terminating condition.
- ONLY ONE path terminator associated with a WP;
- **BUT** possible additional constraints (altitude or speed).

ARINC 424 PATH TERMINATOR

TF	Track between fix				
RF	Radius to fix				
DF	Direct to fix				
FA	Fix to an altitude				
CF	Course to fix				
HF	Hold to fix				
HA	Hold to altitude				
HM	Hold for clearance				
PI	Procedure turn to				
	intrecept				
CA	Course to altitude				
CI	Course to intercept				
CD	Course to dme arc				
CR	Course to VOR radial				
FC	Course from fix				
FD	Fix to DME arc				
FM	Vectors from fix				
AF	DME Arc to fix				
VD	Heading to DME Arc				
VA	Heading to altitude				
VM	Heading (vectors)				
VI	Heading to intercept				
VR	Heading to VOR Radial				

TF : <u>Track between Fixes</u>

Navigate towards the ending waypoint on the track between the two waypoints

TF : <u>Track between</u> <u>Fixes</u>

Navigate towards the ending waypoint on the track between the two waypoints

Initial approach constraints

African Flight Procedure Programme (AFPP)

	Length (NM)	Turn at IAF (°)	Turn at IF (°)	Bank angle (°)	Descent gradient(%)	MOC(m)	
Minimum	(1)	0	0		0		
Optimum	5	70	70	25	4	300	
Maximum	No limit	120	90		8		

(1) Depends on the minimum stabilization distances necessary on the segment

(2) IAS see speed table

Intermediate approach constraints

African Flight Procedure Programme (AFPP)

	Length (NM)	Turn at IF (°)	Turn at FAF (°)	Bank angle (°)	Descent gradient (%)	MOC (m)
Minimum	2 + MDS	0	0		-	150
Optimum	5	70	0	25	Flat	0
Maximum	15	90	30		5.2 + Flat segment	300

(1) Depends on the minimum stabilization distances necessary on the segment

(2) IAS see speed table

Final approach constraints

African Flight Procedure Programme (AFPP)

	Length (NM)	Turn at FAF (°)	Bank angle (°)	Descent gradient (%)	MOC (m)
Minimum	3	0		5.2	0
Optimum	5	0	25	5.2	0
Maximum	10	30		6.5 (AB) & 6.1 (CD)	75

Depends on the minimum stabilization distances necessary on the segment

□ MAPt position

□ IAS see speed table

Missed approach constraints

African Flight Procedure Programme (AFPP)

	Length (NM)	Turn at MAPt (°)	Turn at MATF	Bank angle (°)	Climb gradient (%)
Minimum	(1)	0	0	15	2.5
Maximum	-	No limit	120 (2)	15	-

(1) Depends The length necessary to reach the minimum holding altitude and to guarantee minimum stabilization distances .

(2) No limit when turn is followed by DF.

IAS see speed table

Procedure altitude concept

African Flight Procedure Programme (AFPP)

Need of depiction of different types of altitude:

MOCA (always) and sometimes constraints:

- Airspace;
- Radio navigation;
- Environment;
- Avoid CFIT.

Need to define two types of altitudes

- MOCA: Minimum Obstacle Clearance Altitude
- Procedure Altitude

– ●* Procedure altitude is ALWAYS ≥ MOCA

Procedure altitude concept

African Flight Procedure Programme (AFPP)

Procedure altitude concept

African Flight Procedure Programme (AFPP)

- To support CFIT prevention initiative, procedure altitude should be defined for all NPA;
- Arrival and departure procedure altitude are developed to separate arriving and departing traffic;
- Depiction of procedure altitude / MOCA in NPA approach charts:
 - Procedure altitude is provided in the profile view (ref § 11.10.6.3 annex 4);
 - Inimum altitude (MOCA) or a ground profile is RECOMMENDED to be depicted (ref § 11.10.6.5 annex 4);
 - Control of the segment are depicted with SHADED BLOCKS.
 State of the segment are depicted with SHADED BLOCKS.

