PANS-OPS Flight Procedure Design Training for CAAs

09 - RF turns

(Doc. 8168, Vol. 2, Part III, Sections 2 \& 3)

Outlines

African Flight Procedure Programme (AFPP)

1. Overview

2. Nominal segment

3. Protection
4. Obstacles Assessment
5. Promulgation

What is an RF segment?

Overview

African Flight Procedure Programme (AFPP)

RF leg vs DME arc

\square Flying a DME requests the pilot to fly zigzagging from left to right along the arc;
\square To maintain the radius defined on RF leg the system will act on bank angle and TAS and may compensate the drift;
The RF turn is the only turn method for which the track is unambiguously continuously defined during the turn. The PBN system can construct a defined path that exactly matches the procedure designer's intent:
Obstacle rich environment;

- Environmental;

More than 120°.

Overview

African Flight Procedure Programme (AFPP)

Relevant PBN application

Required only in Advanced RNP
Can be used in RNP APCH and RNP1:

- "RF required" published on chart.
- May be used in:
- Departure procedure;
- Approach:
- Initial
- Intermediate
- For RNAV+ILS=> NO RF for intermediate!
- Missed approach.

Overview

African Flight Procedure Programme (AFPP)

RF leg requirements

U Use of a Flight Director (FD) or Auto-Pilot (AP) mandatory!
The FMC, FD/AP must be capable of commanding a bank angle of up to 25 degrees above 400ft AGL:

- No turn below 400 ft ;
- Max bank angle 25°.

Flight guidance should remain in LNAV mode while on an RF leg when a procedure is abandoned or a go-around is initiated.

To accommodate sudden jump due to gust, some provisions will be added in the protection area.

Nominal segment

African Flight Procedure Programme (AFPP)

Turn radius calculation

\square New!!!
Radius computed adding a wind component
Bank angle can vary up to 25° (not segment dependant);

- Minimum radius to consider:
-r $\geq 2^{*}$ RNP
- $r \geq^{1 / 2} A W$ of inbound and outbound segment
\square TAS computation parameters:
Arc length computed on the nominal path;
Maximum altitude during the turn;
Slope: 10\% for SIDs/Missed approach.

Nominal segment

African Flight Procedure Programme (AFPP)

Turn radius calculation

- New!!!
-Wind velocity:
- Maximum wind speed at the highest point in the turn;
- For SID and Missed approach :
- 10 kt for height (h) 500 ft ;
- 20 kt for $500 \mathrm{ft}<\mathrm{h} \leq 1000 \mathrm{ft}$;
- 30 kt for 1000 ft < h $\leq 2000 \mathrm{ft}$;
- 40 kt for 2000 ft < h $\leq 3000 \mathrm{ft}$;
- ICAO wind above 3000 ft .

Nominal segment

African Flight Procedure Programme (AFPP)

Turn radius calculation

$\boldsymbol{r}=\frac{(\boldsymbol{T} A \boldsymbol{S}+\boldsymbol{V} \boldsymbol{w})^{2}}{\mathbf{6 8 6 2 6} \mathbf{6 2 6}(\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})}$ with r in NM TAS and Vw in kt
$\boldsymbol{r}=\frac{(\boldsymbol{T} A \boldsymbol{S}+V \boldsymbol{w})^{2}}{\mathbf{1 2 7 0 9 4} * \tan (\boldsymbol{\theta})}$ with r in km TAS and Vw in km / h
$\boldsymbol{r}=\frac{(\boldsymbol{T} A \boldsymbol{S}+\boldsymbol{V} \boldsymbol{w})^{2}}{\boldsymbol{g} * \tan (\boldsymbol{\theta})}$ with r in m TAS and Vw in m / s
\square Where:

- θ : Bank angle in degrees;

TAS : True airspeed;
VW: Wind velocity.

Nominal segment

Length in intermediate segment

Min Length : 2 NM including curved and straight legs;

- Max Track change : 45°;
\square Min radius : 2.55 NM .

Nominal segment

African Flight Procedure Programme (AFPP)

Minimum height in the initial departure segment

- Where PDG computed co
$400 \mathrm{Ft} / \mathrm{DER}$ at earliest tolerance of WP, an additional climb gradient is Ft height above DER to reach 400ft/ Alt A/D

ATT

In this case it shall be published:
, An additionnal climb gradient
, WP altitude restriction

Nominal segment

Minimum distance in departure segment

Minimum Distance DER- start of du RF

I NM (I 852 m)

Protection of the departure segment

African Flight Procedure Programme (AFPP)

Protection parameters

Navigation specification		RNP	FTE	IMAL	ATT	XTT	BV	1/2AW
A-RNP	>30 NM ARP	1	0.5		0.8	1	2	3.5
	< 30 NM ARP	1	0.5		0.8	1	1	2.5
	SID<15 NM ARP	1	0.5		0.8	1	0.5	2
RNP 1	>30 NM ARP		0.5	2	1.6	2	2	5
	< 30 NM ARP		0.5	1	0.8	1	1	2.5
	SID<15 NM		0.5	1	0.8	1	0.5	2
RNP APCH	< 30 NM ARP	1	0.5		0.8	1	1	2.5
	FAF	0.3	0.25		0.24	0.3	1	1.45
	MAPt	0.3	0.25		0.24	0.3	0.5	0.95
	MA < 15 NM	1	0.5		0.8	1	0.5	2

Protection of the departure segment

Reduced ATT computation for first WP

ATT is proportionally to XTT:
At DER: ${ }^{1 / 2} \mathrm{AW}=150 \mathrm{~m}$ so ATT $=0.8 \times 150=120 \mathrm{~m}$
ATT is 120 m for $X=0$
ATT is full value when 15° splay reaches ${ }^{1 / 2} \mathrm{AW}$ so for $x=\left[{ }^{1 / 2} \mathrm{AW}-150\right] / \tan 15^{\circ}$
In between a reduced ATT can be computed as follow:

$$
\text { Reduced ATT }=\frac{A T T-120}{(1 / 2 A W-150) / \tan (\theta)}{ }^{*} X+120
$$

X : Distance, in meters, from the DER;
ATT : Full value appropriate to the RNP accuracy; and
120 m : Reduced ATT at the DER.

Protection of the departure segment

Protection for the RF leg

Figure III-2-2-African Flight Procedure Programme (AFPP)
OUTER RADII

```
r+1,5 XTT + BV + 0,1 Nm
```


Protection: 1/2AW Segment 1>1/2AW segment 2

OUTER connection: until reaching the next straight protection area

INNER connection: Taper to the next nominal track with 30° angle
NOT mentionned in doc 8168

Obstacles Assessment

African Flight Procedure Programme (AFPP)
WHAT' S remaining?
MOC;
MOC in secondary area;
OIS for departure.
What is new?
How to compute the required distance ?

- For MOC in departure or gain in missed approach.

Body geometry of the A/C in departure.

Obstacles Assessment in climbing segment

African Flight Procedure Programme (AFPP)

Distance measured on r-0.1NM to compute:
σ^{-}OIS height in departure segment;
or height gain in missed approach.

Alto1 $\leq(($ pdg- $0.8 \%)(\mathrm{d}+\mathrm{d} 1))+5+$ Alt DER
With $\mathrm{d} 1=\left((\mathrm{r}-0.1) \pi \theta_{1}\right) / 180$

> Alt o2 $\leq(($ pdg $-0.8 \%)(\mathrm{d}+\mathrm{d} 2))+5+$ Alt DER With d2 $=\left((\mathrm{r}-0.1) \pi \theta_{1}\right) / 180$

Figure III-2-2-14. Splay in RF turn

Obstacles Assessment in departure segment: body Geometry (BG)

African Flight Procedure Programme (AFPP)

\square Within Straight leg and or RF leg:
Minimum MOC: 0.8\% of distance from DER.
\square Within RF leg:
-As long as 75 m of MOC is not reached, Body Geometry of the A/C is taken into account.

```
BG = wing semi-span*sin (\alpha+5)
```

Where $\alpha=$ bank angle

For wing semi-span $=40 \mathrm{~m}(132 \mathrm{ft})$ and bank $25^{\circ} \mathrm{BG}=20 \mathrm{~m}$

Obstacles Assessment in departure segment: body Geometry (BG)

African Flight Procedure Programme (AFPP)

If MOC < 75 m in RF: OIS takes BG:

- Leveled From "- ATT" to full BG;

Lowered of BG along RF until 90 m.

Promulgation

African Flight Procedure Programme (AFPP)

-If the PDG doesn't reach 400 ft at the start of the RF turn, publish:
An additional gradient and;
An altitude restriction at the waypoint.
$\square R F$ is a required functionality for ARNP:
When using RF in any other application, on the chart is mentioned a note:

- "RF required"!

