

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

PANS-OPS Flight Procedure Design Training for CAAs

23 August – 03 September 2021

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

09 – RF turns (Doc. 8168, Vol. 2, Part III, Sections 2 & 3)

- 1. Overview
- 2. Nominal segment
- 3. Protection
- 4. Obstacles Assessment
- 5. Promulgation

What is an RF segment?

RF leg vs DME arc

- □ Flying a DME requests the pilot to fly zigzagging from left to right along the arc;
- □ To maintain the radius defined on RF leg the system will act on bank angle and TAS and may compensate the drift;
- □ The RF turn is the only turn method for which the track is unambiguously continuously defined during the turn. The PBN system can construct a defined path that exactly matches the procedure designer's intent:
 - Obstacle rich environment;
 - Environmental;
 - More than120°.

Relevant PBN application

- **Required only in Advanced RNP**
- □ Can be used in RNP APCH and RNP1: ^(*) "RF required" published on chart.
- May be used in:
 - Departure procedure;
 - The second secon
 - Initial
 - Intermediate
 - For RNAV+ILS=> NO RF for intermediate!
 - Missed approach.

RF leg requirements

Use of a Flight Director (FD) or Auto-Pilot (AP) mandatory!

The FMC, FD/AP must be capable of commanding a bank angle of up to 25 degrees above 400ft AGL:

No turn below 400 ft;

Max bank angle 25°.

Flight guidance should remain in LNAV mode while on an RF leg when a procedure is abandoned or a go-around is initiated.

To accommodate sudden jump due to gust, some provisions will be added in the protection area.

African Flight Procedure Programme (AFPP)

Turn radius calculation

□ New!!!

Radius computed adding a wind component

Bank angle can vary up to 25° (not segment dependent);

Minimum radius to consider:

■ r ≥ 2*RNP

■ r ≥ ^½AW of inbound and outbound segment

TAS computation parameters:

Arc length computed on the nominal path;

Maximum altitude during the turn;

[©] Slope: 10% for SIDs/Missed approach.

African Flight Procedure Programme (AFPP)

Turn radius calculation

- New!!!
 - **Wind velocity:**
 - Maximum wind speed at the highest point in the turn;
 - For SID and Missed approach :
 - 10 kt for height (h) \leq 500 ft;
 - 20 kt for 500 ft < h ≤ 1 000 ft;
 - 30 kt for 1 000 ft < h \leq 2 000 ft;
 - 40 kt for 2000 ft < h \leq 3 000 ft;
 - ICAO wind above 3 000 ft.

African Flight Procedure Programme (AFPP)

Turn radius calculation

$$r = \frac{(TAS + Vw)^2}{68\ 626 * \tan(\theta)} \text{ with } r \text{ in NM TAS and Vw in kt}$$

$$r = \frac{(TAS + Vw)^2}{127\ 094 * \tan(\theta)} \text{ with } r \text{ in km TAS and Vw in km/h}$$

$$r = \frac{(TAS + Vw)^2}{g * \tan(\theta)} \text{ with } r \text{ in m TAS and Vw in m/s}$$

Where:
 Bank angle in degrees;
 TAS : True airspeed;
 Vw : Wind velocity.

African Flight Procedure Programme (AFPP)

Length in intermediate segment

Min Length : 2 NM including curved and straight legs; Max Track change : 45°;

□ Min radius : 2.55 NM.

So-over the so

Where PDG (

computed co

African Flight Procedure Programme (AFPP)

Minimum height in the initial departure segment

400 Ft/DER at earliest tolerance of WP, an additional climb gradient is Ft height above DER to reach 400ft/ Alt A/D

African Flight Procedure Programme (AFPP)

Minimum distance in departure segment

Minimum Distance DER- start of du RF

Protection of the departure segment

African Flight Procedure Programme (AFPP)

Navigation specification		RNP	FTE	IMAL	ATT	XTT	BV	1/2AW
A-RNP	>30 NM ARP	1	0.5		0.8	1	2	3.5
	< 30 NM ARP	1	0.5		0.8	1	1	2.5
	SID<15 NM ARP	1	0.5		0.8	1	0.5	2
RNP 1	> 30 NM ARP		0.5	2	1.6	2	2	5
	< 30 NM ARP		0.5	1	0.8	1	1	2.5
	SID<15 NM		0.5	1	0.8	1	0.5	2
RNP APCH	< 30 NM ARP	1	0.5		0.8	1	1	2.5
	FAF	0.3	0.25		0.24	0.3	1	1.45
	MAPt	0.3	0.25		0.24	0.3	0.5	0.95
	MA <15 NM	1	0.5		0.8	1	0.5	2

Protection parameters

Protection of the departure segment

African Flight Procedure Programme (AFPP)

Reduced ATT computation for first WP

- ATT is proportionally to XTT: The At DER : ^{1/2}AW = 150 m so ATT = 0.8 x 150 = 120 m
 - **TATT** is 120 m for X =0

TT is full value when 15° splay reaches 1/2AW so for x = [1/2AW-150]/tan15°

In between a reduced ATT can be computed as follow:

Reduced ATT = $\frac{ATT - 120}{(1/2AW - 150)/\tan(\theta)} *X + 120$

X : Distance, in meters, from the DER; : Full value appropriate to the RNP accuracy; and ATT 120 m : Reduced ATT at the DFR.

Protection of the departure segment

Protection for the RF leg

Figure III-2-2-Afgican Flight Procedure Programme (AFPP)

Protection: 1/2AW Segment 1>1/2AW segment 2

Obstacles Assessment

African Flight Procedure Programme (AFPP)

□ WHAT' S remaining?

MOC;
MOC in secondary area;
OIS for departure.

What is new?

The second seco

• For MOC in departure or gain in missed approach.

Body geometry of the A/C in departure.

Obstacles Assessment in climbing segment

African Flight Procedure Programme (AFPP)

Figure III-2-2-14. Splay in RF turn

Distance measured on r-0.1NM to compute:
 OIS height in departure segment;
 or height gain in missed approach.

Alto1 ≤ ((pdg-0.8%) (d+d1)) + 5 + Alt DER With d1 = ((r - 0.1) $\pi \theta_1$)/180

Alt o2 ≤ ((pdg-0.8%)(d+d2)) + 5 + Alt DER With d2 = ((r - 0.1) $\pi \theta_1$)/180

Obstacles Assessment in departure segment: body Geometry (BG)

African Flight Procedure Programme (AFPP)

□ Within Straight leg and or RF leg:

The second secon

Within RF leg:

As long as 75 m of MOC is not reached, Body Geometry of the A/C is taken into account.

BG = wing semi-span*sin (α +5)

Where α =bank angle

```
For wing semi-span = 40 m (132ft) and bank 25 ° BG = 20 m
```


Obstacles Assessment in departure segment: body Geometry (BG)

African Flight Procedure Programme (AFPP)

□ If the PDG doesn't reach 400 ft at the start of the RF turn, publish:

- An additional gradient and;
- An altitude restriction at the waypoint.

RF is a required functionality for ARNP:

When using RF in any other application, on the chart is mentioned a note:

"RF required"!

Path descriptors sequence for initial legs:

