PANS-OPS Flight Procedure Design Training for CAAs

10 - APV Baro-VNAV

(Doc. 8168, Vol. 2, Part III, Section 3, Chap. 4)

Outlines

African Flight Procedure Programme (AFPP)

1. General

2. Standard conditions

3. APV segment
4. APV OAS
5. Obstacles Assessment
6. Promulgation
-APV baro-VNAV procedure:
An Approach Procedure with Vertical guidance in support of Type A 3D approach operations;

- FAP instead of FAF (but FAF needed for other purposes);
- DA/H not an MDA/H
- No MAPt (but MAPt needed for other purposes);
-Use THR coordinates system;
-Used in association with LNAV only procedures;
- HL instead of MOC for the APV segment;
- Not allow with a Remote Altimeter Setting Source.

General

Baro-VNAV key features:

- Includes cold temperature correction;
- Has a minimum promulgated temperature;
- Can have a maximum promulgated temperature;

Cannot be used with remote altimeter setting;
Area defined by underlying LNAV area;

- Identified in the minimum box by:
- "LNAV/VNAV".

The final approach segment should be aligned with the extended centre line of the runway.

Standard conditions

African Flight Procedure Programme (AFPP)
Vertical Path Angle (VPA):

- Effective VPA deepends on temperature and aerodrome elevation;
- Published VPA may differ from Effective VPA;
- Effective VPA tabulated as a function of aerodrome elevation and temperature.
- Effective VPA :
- Minimum $\geq 2.5^{\circ}$ at the lowest prevailing temperature;
- Maximum $\leq 3.5^{\circ}$ at the highest prevailing temperature.
\square A procedure with a promulgated VPA $>3.5^{\circ}$ is a non-standard procedure:
Subject to an aeronautical study;
Require special approval by competent authority.

Standard conditions

-FAP should not be located more than 10 NM before THR;
QVPA between 2.5° and 3.5°;
-RDH: 15 m ;
\square Final axis $=$ RWY axis (max turn at FAF 15°).

Table III-3-4-1. Effective vs promulgated VPA as a function of aerodrome elevation and temperature (Green $=$ optimum; Yellow $=$ non-standard; Orange $=$ prohibited)

	$\begin{gathered} \text { Promulgated } V P A \\ 2.8^{\circ} \end{gathered}$			$\begin{gathered} \text { Promulgated } V P A \\ 3.0^{\circ} \end{gathered}$			$\begin{gathered} \text { Promulgated } V P A \\ 3.2^{\circ} \end{gathered}$		
Temp$\left(C^{\circ}\right)$	Aerodrome elevation			Aerodrome elevation			Aerodrome elevation		
	MSL	3000 ft	6000 ft	MSL	3000 ft	6000 ft	MSL	3000 ft	6000 ft
50	3.14	3.21	3.28	3.37	3.44	3.51	3.59	3.67	3.75
40	3.05	3.11	3.18	3.26	3.33	3.40	3.48	3.55	3.63
30	2.95	3.01	3.07	3.16	3.22	3.29	3.37	3.44	3.51
20	2.85	2.91	2.97	3.05	3.12	3.18	3.26	3.32	3.40
10	2.75	2.81	2.87	2.95	3.01	3.07	3.14	3.21	3.28
0	2.65	2.71	2.77	2.84	2.90	2.96	3.03	3.10	3.16
-10	2.55	2.61	2.66	2.74	2.79	2.85	2.92	2.98	3.04

APV segment

-The APV segment for baro-VNAV:
Starts at FAP (intersection intermediate altitude and VPA);
Ends at MATF, MAHF or the turn altitude.
-The APV segment contains:
-The final approach segment;

- The initial and intermediate missed approach segments.
\square APV Obstacles Assessment Surfaces (OAS) to be defined for obstacles assessment;
The LNAV missed approach criteria apply in final missed approach.

APV OAS

\square APV segment has 3 surfaces:
Final Approach Surface (FAS);
-Horizontal/ Ground Plane;
Missed approach surface (Z).
\square Each surface split in :

- Central surface bounded laterally by the LNAV primary area; - Side surfaces bounded laterally by the LNAV secondary area.

African Flight Procedure Programme (AFPP)

FAS parameters

- Lateral : LNAV surface:
- MAPt at threshold;
-FAF at FAP;
- The secondary area of LNAV surfaces become OAS side surfaces.
\square Vertical :
VPA;
- Temperature correction : Δh
- Hi ;

ATT $=0.8 \times \operatorname{RNP}(N M)=444 \mathrm{~m}$
XFAS : Origin of surface at the threshold level aFAS: Angle of the FAS

FAS central and side surfaces

The value of H_{i} is as follows:

- $\mathrm{H}_{0}=75 \mathrm{~m}$ below 5000 ' AMSL;
- $\mathrm{H}_{5000}=105 \mathrm{~m}$ between 5000^{\prime} and 10000^{\prime} AMSL;
- $\mathrm{H}_{10000}=120 \mathrm{~m}$ at or above 10000^{\prime} AMSL.

Profile view

© 2021, African Flight Procedure Programme

African Flight Procedure Programme (AFPP)

Temperature impact on the VPA

$\Delta \mathrm{h}$ is positive when the atmosphere is colder than the standard one;
$\square \Delta h$ is negative when the atmosphere is warmer than the standard one.

Calculation of the temperature correction

$$
\Delta h=-\left(\frac{\Delta T_{S T D}}{2 a}\right) * \ln \left(1+\frac{L o * h F A P}{T o+L o * H T H R}\right)
$$

$\Delta \mathrm{T}_{\text {STD }}=$ temperature deviation from the standard day (ISA) temperature
$\mathrm{L}_{0} \quad=$ standard temperature lapse rate with pressure altitude in the first layer (sea level to tropopause) of the ISA $\left(-0.0065^{\circ} / \mathrm{m}\right)$
$\mathrm{h}_{\text {FAP }}=$ procedure height above the threshold at the FAP
$\mathrm{T}_{0} \quad=\quad$ standard temperature at sea level $(288.15 \mathrm{~K})$
$\mathrm{h}_{\mathrm{THR}}=$ threshold elevation above mean sea level

$\Delta \mathrm{h}$ tabulated in

$$
\begin{aligned}
& \mathrm{Ex}: h_{F A P}=900 \mathrm{~m}, h_{T H R}=300 \mathrm{~m}, \operatorname{Tmin}=-20^{\circ} \mathrm{C} \\
& \Delta T_{S T D}=(273,15-20)-(-0,0065 \times 300)-288,15=-33,05 \\
& \Delta h=-\left(\frac{-33,05}{-0,0065}\right) \times \ln \left[1+\frac{-0,0065 \times 900}{288,15-0,0065 \times 300}\right]=105,01 \mathrm{~m}
\end{aligned}
$$

APV OAS: Minimum and maximum VPA checks

African Flight Procedure Programme (AFPP)

Tan (max VPA) $=$ (Height FAP- $\Delta \mathrm{h}-\mathrm{RDH}$) / $\mathrm{D}_{\text {FAP/THR }}$

APV OAS

African Flight Procedure Programme (AFPP)

FAS calculations

Calculate origin : XFAS
Calculate gradient : α FAS FAS equation :

$$
\mathrm{h}(\mathrm{FAS})=\left(\mathrm{X}-\mathrm{X}_{\mathrm{FAS}}\right) \cdot \tan (\alpha \mathrm{aFAS})
$$

APV OAS

African Flight Procedure Programme (AFPP)

FAS calculations: FAS origin

© 2021, African Flight Procedure Programme

APV OAS

African Flight Procedure Programme (AFPP)

FAS calculations: FAS gradient (α FAS)

APV OAS

African Flight Procedure Programme (AFPP)
FAS side surfaces

FAS Summary

African Flight Procedure Programme (AFPP)

DData :
-ALT FAP
ALT THR

- MIN TEMPERATURE
- MAX TEMPERATURE
-VPA
- CAT Aircraft
σ RDH
-Calculations:
- Calculate Δh

Check VPA min

- Check VPA max

Calculate FAS Origin :

- Xfas (Xfas' and Xfas" if needed)
- Calculate FAS gradient :
- α FAS ($\alpha F A S^{\prime}$ and $\alpha F A S^{\prime \prime}$ if needed)

Height of FAS surface at range $X: h_{\text {FAS }}=\left(X-X_{\text {FAS }}\right) \cdot \tan \alpha_{\text {FAS }}$ Height of FAS Side surface at range $X, Y: h_{\text {side }(x, y)}=h_{\text {FAS }(x)}+(\%$ of Hi $)$

If $\mathrm{H}_{\text {obst }}>\mathrm{h}_{\text {OAS }}=>$ consider this obstacle for OCH computation

APV OAS

> African Flight Procedure Programme (AFPP)

Horizontal plane or Ground plane

Starts at XFAS;
\square Ends at Xz*:
$X_{z}=-900 m$ for Cat A and B;

- $X z=-1100 m$ for Cat C;
$X_{z}=-1400 m$ for Cat D.
\square *Note: Adjusted values for airfield elevation $>900 \mathrm{~m}$ or promulgated VPA $>3.2^{\circ}$

APV OAS

African Flight Procedure Programme (AFPP)
Horizontal plane or Ground plane

Missed approach surface (Z)

- Intermediate missed approach surface
- Starts at X_{z}
- Ends at earliest TP or XTH
- Climb gradient : 2.5 \%
- Could be adjusted up to 5\%
- $\mathrm{Hz}=-(\mathrm{x}-\mathrm{Xz}) * 0.025$

APV OAS

African Flight Procedure Programme (AFPP)

Missed approach side surface

\square After Xz :
-Height of edge of secondary area 30m higher than height of primary area

APV OAS

African Flight Procedure Programme (AFPP)

Side surfaces

APV OAS

African Flight Procedure Programme (AFPP)
Height in Side surface between $X_{\text {FAS }}$ and ATT before THR

Height of side surface limit at Xobst
Xob

African Flight Procedure Programme (AFPP)

APV OAS summary

Obstacles Assessment

African Flight Procedure Programme (AFPP)
As in ILS, obstacles classified in:

- Approach obstacles and

$$
\mathrm{VPA}^{\prime}: \mathrm{H}_{\mathrm{VPA}^{\prime}}=(\mathrm{x}-\mathrm{Xz}) \tan \mathrm{VPA}
$$

- Missed approach obstacles.

Obstacles Assessment

African Flight Procedure Programme (AFPP)

Obstacles before Xz \& not penetrating VPA'

Approach obstacles because lower than VPA'

Obstacle penetrating FAS or ground central surface :

Obstacle penetrating FAS or ground plane side surfaces :

$$
\mathrm{OCH}=\text { hobst }+\mathrm{HL}
$$

Side surfaces:

hVPA'= hVPA' central +[(ABS(Yobst) - Yprimary) / Yprimary] x 30

Obstacles Assessment

African Flight Procedure Programme (AFPP)

Obstacles before Xz \& penetrating VPA' central surface

Computation of ha : height in approach (Equivalent height of the obstacle in approach: Same OCH)
ha = [(hma/ tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]

Obstacles Assessment

African Flight Procedure Programme (AFPP)

Obstacles before Xz \& penetrating VPA' side surface

Missed approach obstacles because higher than VPA' side surfaces

Central surface:
hVPA' central =[(Xobst-Xz) tanVPA]

Side surfaces:
hVPA'= hVPA' central $+[(A B S(Y o b s t)-$ Yprimary) $/$ Yprimary $] \times 30$

2- Computation of ha : ha = [(h'ma / tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]
3. $\mathrm{OCH}=\mathrm{ha}+\mathrm{HL}$

Obstacles Assessment

African Flight Procedure Programme (AFPP)

Central surface : Height of Z central surface $=[(X o b s t-X z)$ tanZ]
Computation of ha : height in approach (Equivalent height of the obstacle in approach: Same OCH)

$$
\text { ha }=[(\mathrm{hma} / \tan \mathrm{Z})+(\text { Xobst }-\mathrm{Xz})] /[(1 / \operatorname{tanZ})+(1 / \tan \mathrm{VPA})]
$$

Obstacles Assessment

African Flight Procedure Programme (AFPP)

Obstacles after Xz \& penetrating Z side surfaces

Missed approach obstacles
Zsurface
30 m above central surface

Height of Z side surface $=$ height of Z central surface $+[(A B S(Y o b s t)-Y p r i m a r y) /$ Yprimary $] \times 30$ with height of Z central surface $=[($ Xobst- $X z)$ tan $Z]$ and with Yprimary $=$ Ysecondary $/ 2$ and Y secondary $=\left(0,95 N N^{*} 1852\right)+($ ATT-Xobst $) \times \tan \left(15^{\circ}\right)$

1- Computation of corresponding h'ma : h'ma = height of Z central surface + penetration
2- Computation of ha: ha $=\left[\left(\mathrm{h}^{\prime} \mathrm{ma} / \tan Z\right)+(\right.$ Xobst -Xz$\left.)\right] /[(1 / \tan Z)+(1 / \tan \mathrm{VPA})]$
3- $\mathrm{OCH}=\mathrm{ha}+\mathrm{HL}$

Obstacles Assessment

African Flight Procedure Programme (AFPP)

- OCH calculation method:

Assessment of penetrating obstacles;

- Ho > Hoas;
- Identification of approach obstacles and missed approach obstacles;
- Calculation of equivalent obstacle for Missed approach obstacles (2 computation maybe);
${ }^{-}$Calculation of OCH using HL.
$\square O C H=$ max of all individual OCH of the APV OAS

Promulgation

Title : RNAV (GNSS)
Minimum box : LNAV/VNAV

RDH
 VPA: $X^{\circ} \mathrm{XX}$ for databases
 $\mathrm{X}^{\circ} \mathrm{X}$ for charting

Min temperature for which APV
BaroVNAV operations are authorized
Temperatue above which the effective VPA will exceed 3.5° (only if this value is possible)

For Databases only :

- FAF and MAPt LNAV

