

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

PANS-OPS Flight Procedure Design Training for CAAs

23 August – 03 September 2021

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

10 – APV Baro-VNAV (Doc. 8168, Vol. 2, Part III, Section 3, Chap. 4)

- 1. General
- 2. Standard conditions
- 3. APV segment
- 4. APV OAS
- 5. Obstacles Assessment
- 6. Promulgation

APV baro-VNAV procedure:

- An Approach Procedure with Vertical guidance in support of Type A 3D approach operations;
- **FAP** instead of FAF (but FAF needed for other purposes);
- TA/H not an MDA/H
- No MAPt (but MAPt needed for other purposes);
- @ Use THR coordinates system;
- Used in association with LNAV only procedures;
- **HL instead of MOC for the APV segment;**
- Not allow with a Remote Altimeter Setting Source.

Baro-VNAV key features:

- Includes cold temperature correction;
- Has a minimum promulgated temperature;
- Can have a maximum promulgated temperature;
- Cannot be used with remote altimeter setting;
- Area defined by underlying LNAV area;
- Identified in the minimum box by:
 - "LNAV/VNAV".
- The final approach segment should be aligned with the extended centre line of the runway.

Standard conditions

African Flight Procedure Programme (AFPP)

□ Vertical Path Angle (VPA):

Effective VPA deepends on temperature and aerodrome elevation;

- Published VPA may differ from Effective VPA;
- Effective VPA tabulated as a function of aerodrome elevation and temperature.
- **Effective VPA :**
 - Minimum ≥ 2.5° at the lowest prevailing temperature;
 - Maximum ≤ 3.5° at the highest prevailing temperature.
- □ A procedure with a promulgated VPA >3.5° is a non-standard procedure:
 - Subject to an aeronautical study;
 - The Require special approval by competent authority.

Standard conditions

- □ FAP should not be located more than 10 NM before THR;
- □ VPA between 2.5° and 3.5°;
- **RDH: 15 m;**
- Final axis = RWY axis (max turn at FAF 15°).

Table III-3-4-1.Effective vs promulgated VPA as a function of aerodrome elevation and temperature
(Green = optimum; Yellow = non-standard; Orange = prohibited)

	Promulgated VPA 2.8°			Promulgated VPA 3.0°			Promulgated VPA 3.2°		
Town	Aerodrome elevation			Aerodrome elevation			Aerodrome elevation		
(C°)	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 ft	MSL	3 000 ft	6 000 ft
50	3.14	3.21	3.28	3.37	3.44	3.51	3.59	3.67	3.75
40	3.05	3.11	3.18	3.26	3.33	3.40	3.48	3.55	3.63
30	2.95	3.01	3.07	3.16	3.22	3.29	3.37	3.44	3.51
20	2.85	2.91	2.97	3.05	3.12	3.18	3.26	3.32	3.40
10	2.75	2.81	2.87	2.95	3.01	3.07	3.14	3.21	3.28
0	2.65	2.71	2.77	2.84	2.90	2.96	3.03	3.10	3.16
-10	2.55	2.61	2.66	2.74	2.79	2.85	2.92	2.98	3.04

□ The APV segment for baro-VNAV:

Starts at FAP (intersection intermediate altitude and VPA);
 Ends at MATF, MAHF or the turn altitude.

The APV segment contains:

The final approach segment;

The initial and intermediate missed approach segments.

APV Obstacles Assessment Surfaces (OAS) to be defined for obstacles assessment;

The LNAV missed approach criteria apply in final missed approach.

APV segment has 3 surfaces:

- Final Approach Surface (FAS);
 Horizontal/ Ground Plane;
- Thissed approach surface (Z).

Each surface split in :

- Central surface bounded laterally by the LNAV primary area;
- **Side surfaces bounded laterally by the LNAV secondary area.**

FAS parameters

- Lateral : LNAV surface:
 - MAPt at threshold;
 - Generation FAF at FAP;
 - The secondary area of LNAV surfaces become OAS side surfaces.
- Uvertical :
 - 𝐨VPA;
 - Temperature correction : Δh
 - ☞Hi;

```
☞ATT = 0.8 x RNP(NM)= 444 m
```

XFAS : Origin of surface at the threshold level αFAS : Angle of the FAS

٠

•

•

© 2021, African Flight Procedure Programme

Temperature impact on the VPA

- Δh is positive when the atmosphere is colder than the standard one;
- Δh is negative when the atmosphere is warmer than the standard one.

Calculation of the temperature correction

 $\Delta \boldsymbol{h} = -\left(\frac{\Delta T_{STD}}{2a}\right)^* \ln(1 + \frac{Lo \cdot hFAP}{To + Lo \cdot HTHR})$

$$\Delta T_{STD} = \text{temperature deviation from the standard day (ISA) temperature}$$

$$L_{o} = \text{standard temperature lapse rate with pressure altitude in the first layer (sea level to tropopause)}$$

$$h_{FAP} = \text{procedure height above the threshold at the FAP}$$

$$T_{o} = \text{standard temperature at sea level (288.15K)}$$

$$h_{THR} = \text{threshold elevation above mean sea level}$$

$$Ex:h_{FAP} = 900\text{m}, h_{THR} = 300\text{m}, \text{Tmin} = -20^{\circ} \text{ C}$$

$$\Delta T_{STD} = (273,15-20) - (-0,0065 \times 300) - 288,15 = -33,05$$

$$\Delta h = -\left(\frac{-33,05}{-0,0065}\right) \times \ln\left[1 + \frac{-0,0065 \times 900}{288,15 - 0,0065 \times 300}\right] = 105,01\text{m}$$

APV OAS: Minimum and maximum VPA checks

African Flight Procedure Programme (AFPP)

Tan (max VPA) = (Height FAP- Δh - RDH) / D _{FAP/THR}

APV OAS

^{© 2021,} African Flight Procedure Programme

APV OAS

African Flight Procedure Programme (AFPP)

FAS calculations: FAS gradient (αFAS)

APV OAS

FAS Summary

Data :

ALT FAP

- CALT THR
- **MIN TEMPERATURE**
- **MAX TEMPERATURE**
- **PAV**
- CAT Aircraft
- [™]RDH

Calculations:

- \bigcirc Calculate Δh
- Check VPA min
- Check VPA max
- Calculate FAS Origin :
- Xfas (Xfas' and Xfas'' if needed)
- Calculate FAS gradient :
- αFAS (αFAS' and αFAS'' if needed)

Height of FAS surface at range X : $h_{FAS} = (X - X_{FAS})$.tan α_{FAS}

Height of FAS Side surface at range X,Y : $h_{side(x,y)} = h_{FAS(x)} + (\% \text{ of Hi})$

If $H_{obst} > h_{OAS} = consider this obstacle for OCH computation$

Horizontal plane or Ground plane

- **Starts at XFAS;**
- **Ends at Xz*:**
 - **Xz = 900 m** for Cat A and B;
 - Xz = 1 100 m for Cat C ;
 - [©]Xz = 1 400 m for Cat D.
- *Note: Adjusted values for airfield elevation > 900 m or promulgated VPA>3.2°

Missed approach surface (Z)

- Intermediate missed approach surface
 - Starts at X_z
 - Ends at earliest TP or XTH
- Climb gradient : 2.5 %
 - Could be adjusted up to 5%
- Hz = -(x Xz) * 0.025

Missed approach side surface

After Xz :

The secondary area 30m higher than height of primary area

20°0AGI-MALO

African Flight Procedure Programme (AFPP)

Obstacles before Xz & not penetrating VPA' Approach obstacles because lower than VPA'

Obstacle penetrating FAS or ground plane **side surfaces** :

Side surfaces :

hVPA'= hVPA' central +[(ABS(Yobst) - Yprimary) / Yprimary] x 30

20°0001-44-00

African Flight Procedure Programme (AFPP)

OCH = ha + HL

Obstacles before Xz & penetrating VPA' central surface

Central surface : hVPA' central =[(Xobst-Xz) tanVPA]

Computation of ha : height in approach (Equivalent height of the obstacle in approach: Same OCH)

ha = [(hma/ tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]

African Flight Procedure Programme (AFPP)

Obstacles before Xz & penetrating VPA' side surface

Central surface : hVPA' central =[(Xobst-Xz) tanVPA] Side surfaces : hVPA'= hVPA' central +[(ABS(Yobst) - Yprimary) / Yprimary] x 30

^{2- Computation of ha :} ha = [(h'ma / tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]

African Flight Procedure Programme (AFPP)

Computation of ha : height in approach (Equivalent height of the obstacle in approach: Same OCH)

ha = [(hma / tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]

OCH = ha + HL © 2021,

African Flight Procedure Programme (AFPP)

Obstacles after Xz & penetrating Z side surfaces

Height of Z side surface = height of Z central surface + $[(ABS(Yobst) - Yprimary) / Yprimary] \times 30$ with height of Z central surface = $[(Xobst-Xz) \tan Z]$ and with Yprimary = Ysecondary / 2 and Ysecondary = $(0.95NM*1852) + (ATT-Xobst) \times \tan(15^{\circ})$

1- Computation of corresponding h'ma : h'ma = height of Z central surface + penetration

2- Computation of ha : ha = [(h'ma / tanZ) + (Xobst - Xz)] / [(1/tanZ) + (1/tanVPA)]

³⁻ OCH = ha + HL

African Flight Procedure Programme (AFPP)

OCH calculation method:

- Assessment of penetrating obstacles;
- @ Ho > Hoas;
- Identification of approach obstacles and missed approach obstacles;
- Calculation of equivalent obstacle for Missed approach obstacles (2 computation maybe);
- Calculation of OCH using HL.

OCH = max of all individual OCH of the APV OAS

Title : RNAV (GNSS) Minimum box : LNAV/VNAV

RDH VPA: X° XX for databases X° X for charting

Min temperature for which APV BaroVNAV operations are authorized

Temperatue above which the effective VPA will exceed 3.5° (only if this value is possible)

For Databases only :

FAF and MAPt LNAV

