

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

PANS-OPS Flight Procedure Design Training for CAAs

23 August – 03 September 2021

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

04 – Tolerance and protection area

(GNSS sensor only) (Doc. 8168, vol. 2, Part III, Section 1, Chap. 1 & 2)

African Flight Procedure Programme (AFPP)

- 1. General
- 2. Waypoint tolerances
- 3. The Total System Error (TSE)
- 4. Protection area width

African Flight Procedure Programme (AFPP)

Objectives:

- General Content Section S
 - to calculate RNAV and RNP tolerances;
 - To protect the PBN segments for all navigation specifications.

PBN performance criteria:

- @ Accuracy (TSE);
- @Integrity;
- Continuity.

African Flight Procedure Programme (AFPP)

- The fix tolerance represents where A/C is assumed to be regarding the fix position and the ACCEPTABLE PROBABILITY;
- □ The tolerance addresses a 2 SD (standard deviation) value.

African Flight Procedure Programme (AFPP)

African Flight Procedure Programme (AFPP)

Calculating the TSE

- **TSE = Root Sum Square (RSS) of different errors (NSA, FTE, PDE, etc.).**
- **TSE defined for each navspec:**
 - SE depends on the system performance:
 - NSE= 0.08 NM for GNSS
 - NSE for VORDME or DME/DME vary
 - **FTE** is a fixed value per navigation specification:
 - For RNAV, FTE = ½ required navigation accuracy
 - For RNP ≥ 0.5, FTE = ½ RNP
 - For RNP ≤ 0.5, FTE = 463 m (0.25 NM)

PDE corresponds to the system computation tolerance ST and is a fixed value 0.25 NM

African Flight Procedure Programme (AFPP)

Flight Technical Error (FTE)

Ability to follow the defined path

FTE in manual mode (Pilot follows the deviation from the CDI)

- **FTE with the FD**
- **FTE of the Autopilot**

Error depends on the flight phase (sensibility of the deviation indicator, AP)

Flight phase		Coupled					
	ivianuai (Nivi)	Flight Director (NM)	Autopilot (NM)				
Oceanic	2.0	0.5	0.25				
En-route	1.0	0.5	0.25				
Terminal	1.0	0.5	0.25				
Approach	0.5	0.25	0.125				

African Flight Procedure Programme (AFPP)

Navigation System Error (NSE)

Difference between the estimated position and the real position;

- **Takes into account:**
 - Transmitted Signal error;
 - Position calculation error.

African Flight Procedure Programme (AFPP)

Path Definition Error (PDE)

- **Errors between the desired path and the defined path;**
- □ Waypoint coordinates in WGS 84;
- **Possible Error Source:**
 - Errors in the defined coordinates of the WPt;
 - Misinterpretation of the source by the data base encoder;
 - The second secon
- PDE is managed through a quality process and development methodology in data processing (coding process):
 - @ DO 200A
 - IOA Type 1 and 2
- **The end user is the operator:**
 - The has to assess that adequate development methodology has been applied;
 - Trew procedures to check that what is encoded is what is published.

African Flight Procedure Programme (AFPP)

IMAL : Integrity Monitoring Alarm Limit

- IMAL allows AIRCREW to DETECT that the SIGNAL IN SPACE (NSE) is not achieving the navigation PERFORMANCE REQUIRED
- IMAL value depends on the GNSS MODE which corresponds to the PHASE OF FLIGHT

GNSS mode

African Flight Procedure Programme (AFPP)

CONCILIANTO

The Total System Error (TSE)

African Flight Procedure Programme (AFPP)

Buffer Values (BV)

Phase of flight	BV for Cat. A to E (NM)	BV for Cat. H (NM)
En-route (> 30 NM from departure or destination ARP)	2.0	1.0
Terminal (STARs, Initial and intermediate Approaches within 30 NM to ARP; SIDs and missed approaches within 30 NM from ARP but more than 15 Nmfrom ARP)	1.0	0.7
Final Approach	0.5	0.35
Missed Approach and SIDs ≤ 15 NM ARP	0.5	0.35

African Flight Procedure Programme (AFPP)

Area Width (AW) calculations

Semi area width is based on 3σ standard deviation
 2 σ value corresponds to XTT;

3 σ value corresponds to ^{1/2} A/W:

1/2 A/W = 1.5 XTT + BV

- □ Why Buffer Value (BV)?
 - To cater for BLUNDER ERRORS
 - To cater for TAIL OF DISTRIBUTION
- **Buffer Value depends on:**
 - PHASE OF FLIGHT
 - AIRCRAFT characteristic (helicopter or airplane)

Na	vigation specification	RNP	FTE	IMAL	ATT	XTT	BV	1/2AW	tht Procedure Programme (A	-PP)
RNP4	En route	4	2		3.2	4	2	8		
RNP1	More than 30 Nm from ARP	1	0.5		0.8	1	2	3.5		
	< 30 Nm ARP	1	0.5		0.8	1	1	2.5		
	SID<15 NM ARP	1	0.5		0.8	1	0.5	2		
RNP A	PPLICATION			1⁄2 A	\W= 1	.5 x	XTT	+ BV		

RNP APCH	< 30 Nm ARP	1	0.5		0.8	1	1	2.5
	FAF	0.3	0.25		0.24	0.3	1	1.45
	MAPT	0.3	0.25		0.24	0.3	0.5	0.95
	MA <15 NM	1	0.5	© 20	0.8	gnt Proced 1	0.5	ne 2

Na	vigation specification	RNP	FTE	IMAL	ATT	XTT	BV	1/2AW	
									on area width
RNAV5	En route		2.5	2	2.01	2.51	2	5.77	
									ight Procedure Programme (AFPP)
	Plus de 30 Nm ARP		1	2	1.6	2	2	5	
RNAV2	< 30 Nm ARP		1	1	0.8	1	1	2.5	
	SID <15 NM ARP		1	1	0.8	1	0.5	2	
	greater than 30 Nm ARP		0.5	2	1	2	2	5	
RNAV1	< 30 Nm ARP		0.5	1	0.8	1	1	2.5	
	SID<15 NM ARP		0.5	1	0.8	1	0.5	2	
RNA Wit	N APPLICATION	N I		1	∕₂ AW=	= 1.5	x XT	T + B\	/
								17	

Navigation specification		RNP	FTE	IMAL	ATT	XTT	BV	1/2AW
RNP4	En route	4	2		3.2	4	2	8
RNAV5	En route		2.5	2	2.01	2.51	2	5.77
RNP1	More than 30 Nm from ARP	1	0.5		0.8	1	2	3.5
	< 30 Nm ARP	1	0.5		0.8	1	1	2.5
	SID<15 NM ARP	1	0.5		0.8	1	0.5	2
RNAV2	Plus de 30 Nm ARP		1	2	1.6	2	2	5
	< 30 Nm ARP		1	1	0.8	1	1	2.5
	SID <15 NM ARP		1	1	0.8	1	0.5	2
RNAV1	greater than 30 Nm ARP		0.5	2	1.6	2	2	5
	< 30 Nm ARP		0.5	1	0.8	1	1	2.5
	SID<15 NM ARP		0.5	1	0.8	1	0.5	2
RNP APCH	< 30 Nm ARP	1	0.5		0.8	1	1	2.5
	FAF	0.3	0.25		0.24	0.3	1	1.45
	MAPT	0.3	0.25		0.24	0.3	0.5	0.95
	MA <15 NM	1	0.5		0.8	1	0.5	2

For <u>RNAV NAVIGATION SPECIFICATION</u>, values in the table are applicable for airplane and for <u>GNSS</u> sensor only

African Flight Procedure Programme (AFPP)

Area Width global methodology:

- The weight of the second secon
 - XTT
 - BV

Where NEITHER XTT NOR BV are changing:

Area width is a CORRIDOR

Where at least one of the two elements changes, to calculate the area width, three questions are to be answered:

- Question 1 : AT THE LOCATION where XTT is changing which value is taken into account for area width calculation ?
- Question 2 : AT THE LOCATION where BV is changing which value is taken into account for area width calculation ?
- Question 3 : How to CONNECT the two areas ?

African Flight Procedure Programme (AFPP)

Area Width global methodology: Straight area

Primary & secondary area apply: Where no no change of flight phase nor XTT:

Area is a corridor

African Flight Procedure Programme (AFPP)

Area Width at the location where XTT changes:

AT THE LOCATION where XTT is changing which value is taken into account for area width calculation?

First case :

When PRECEDING area width is LARGER than the SUBSEQUENT one.
Second case :

When PRECEDING area width is SMALLER than the SUBSEQUENT one.
What are the conditions that induce the change of XTT?

- Change of value of RNP;
- Change of accuracy for RNAV application.

African Flight Procedure Programme (AFPP)

Area Width at the location where XTT changes:

- First case: When PRECEDING accuracy value is LARGER than the SUBSEQUENT one : Assumption:
 - At the point where the change of RNP / accuracy is required, the RNP/ accuracy is achieved.
 - Conclusion and answer to the question :

AT the LOCATION where ACCURACY is changing, take the MOST ACCURATE so the SMALLEST XTT

Example:

- At FAF RNP changes from 1 to 0.3 NM
- For RNP application : XTT= RNP
 - XTT_{FAF} = 0.3 NM

African Flight Procedure Programme (AFPP)

Area Width at the location where BV changes:

Calculation for the FAF :

The FAF, BV id changing from 1 to 0.5 NM

AT THE LOCATION where BV is changing, take the BV of the PRECEDING phase.

BV = 1 NM $^{1/2}AW = 1.5*0.3+1 = 1.45$

