Non-Radar Surveillance
ADS-B/MLAT/WAM Products

HOLGER NEUFELDT
Non-Radar Surveillance

New Methods for Air traffic Surveillance

- **Automatic Dependent Surveillance Broadcast (ADS-B)**
 - Transfer of onboard data by an Aircraft

- **Multilateration**
 - Hyperbolic/differential Multilateration – Time Difference of Arrival (TDOA)
 - Elliptical/multi ranging Multilateration – Time Sum of Arrival (TSOA)

Thales Product: MAGS System

Multilateration and ADS-B Ground Surveillance System
MAGS Product Line – Multilateration and ADS-B Ground Surveillance

- Based on 1030/1090 MHz SSR ATCRBS and Mode S signals (and UAT)
- Using Multilateration and Automatic Dependent Surveillance Broadcast (ADS-B) technology

MAGS – a product family of co-operative non-radar secondary surveillance sensors
Thales Product Line Non-Radar Surveillance

Automatic Dependent Surveillance Broadcast (ADS-B)
- Standalone ADS-B
- Centralized ADS-B
- Active ADS-B
- ADS-B Server

Multilateration Systems
- Wide Area Multilateration (WAM) Systems
- Precision Approach Monitoring (PAM) Systems
- Airport Multilateration Systems (MLAT)

Monitoring Systems
- 1030/1090 MHz Spectrum Monitoring Equipment
- TCAS Monitoring Equipment and ACAS Server

Key ADS-B Operational References:
- FAA Next Gen SBS
- Airservices Australia
- French DTI
- German DFS
- AirNav Indonesia
- Airways New Zealand

Key Multilateration Operational References:
- UK MoD Marshall Program
- German DFS
- French DTI
- Estonian EATNS#
- South African ATNS

Key Monitoring References:
- DFS Radio Field Monitor – countrywide system
- US NASA, MIT Lincoln Lab
Thales has delivered over 2,000 ADS-B and Multilateration Ground Stations around the World

Last update: October 2016
Thales ADS-B

ADS-B STANDALONE
ADS-B CENTRALIZED
ACTIVE ADS-B
ADS-B SERVER
Automatic Dependant Surveillance Broadcast ADS-B

Global Navigation Satellite System

Aircraft use GNSS and/or inertial navigation sensors to determine their own position.

ADS-B messages contain realtime data, like:
- position,
- altitude,
- velocity vector,
- intent.

Aircraft broadcast ADS-B messages periodically without being interrogated.

ADS-B in
ADS-B out

ADS-B Ground Station

ADS-B Messages

System Output: Aircraft reports

Surveillance Data Processor

Track Reports

ATC Display System

ADS-B acquires Positions via Data Link
Situational Awareness

Surveillance for Radar-like separation

Transfer of Position, Velocity, Identity, Intent

ADS-B out

1090 ES (1090 MHz Extended Squitter)

ADS-B in

ADS-B out

Ground Station

Surface Surveillance

Vehicles

ADS-B out

ADS-B in
ADS-B Extended Squitter

(Short) Squitter extended by 56 Bit data, hence „extended“ Squitter (1090 ES)

Required surveillance data split into different messages:

- Airborne Position Squitter: 2/s („odd“ and „even“)
- Airborne Velocity Squitter: 2/s
- Surface Position Squitter: 2/s („odd“ and „even“),
 1/5s when stationary
- Identification” Squitter: 1/5s (1/15s when stationary)

Further Squitter types:

- Target State and Status Squitter,
- Aircraft Operational Status Squitter, und
- Emergency and Priority Squitter
ADS-B Advantages

- Accuracy like GPS (quality independent of range)
- High update rate (2 positions/s, 2 velocity/s)
- Intent available (level-off altitude, next waypoint, etc.)
- Better surveillance in fringe areas of radar coverage
- Precise report of aircraft position
- Improving the airspace use, particularly in congested areas
- Low ground equipment cost and infrastructure requirements
- Low lifecycle cost
International Standards

- ICAO Annex 10 – Signals in Space

- DO260B / ED102A – MOPS for Avionics
 - data contents
 - encoding rules
 - Guidelines for algorithms/methods

- ED129B – Specifications for ADS-B Ground Systems

- ED 126, 161, 163 – Safety & Performance requirements for
 - Non Radar Airspace (ED126 – ADS-B NRA)
 - Radar Airspace (ED161 – ADS-B RAD)
 - Airports (ED163 – ADS-B APT)

MOPS Versions

- DO260/ED102 – Version 0
- DO260A – Version 1
- DO260B/ED102A – Version 2
Typical Thales ADS-B equipment

AX680

- High Performance Receiver
- AL4/ED109A compliant Software
- Fully DO260B compliant
- Autonomous ADS-B Processing
- Asterix Cat21 Output
- WAM / MLAT Processing

Single/dual channel/link ground station (indoor version)

FAA SBS Radio
Thales MAGS ADS-B System

Based on AX680 ADS-B Ground Station

Without central component – „ADS-B Standalone“
- Airservices Australia – Upper Airspace Program
- DGAC Indonesia – Nationwide ADS-B Deployment Program
- FAA – Surveillance Broadcast Services Program

With central component – „ADS-B Centralised“
- Hong Kong Civil Aviation Department – ADS-B Program
- DFS Germany – PAM FRA, WAM and ADS-B Program
- DTI France – Lyon and Nice Airports, Multilateration and ADS-B Program
ADS-B Standalone

Global Navigation Satellite System

ADS-B out
ADS-B in

ADS-B Messages

Aircraft use GNSS and/or inertial navigation sensors to determine their own position

ADS-B Ground Station

ADS-B messages contain realtime data, like:

- position,
- altitude,
- velocity vector,
- intent.

System Output:
Aircraft reports

Asterix Cat21

Surveillance Data Processor

Track Reports

ATC Display System

Aircraft broadcast ADS-B messages periodically without being interrogated.

ADS-B Ground Station provides Asterix Target Reports
ADS-B Centralized

Global Navigation Satellite System

ADS-B out
ADS-B in

Aircraft use GNSS and/or inertial navigation sensors to determine their own position

ADS-B messages contain realtime data, like:
- position,
- altitude,
- velocity vector,
- intent.

ADS-B out
ADS-B in

ADS-B Out
ADS-B In

Aircraft broadcast ADS-B messages periodically without being interrogated.

ADS-B Ground Station

Asterix or Raw Data

ADS-B Central Processor

System Output: Aircraft reports

Surveillance Data Processor

Asterix Cat 21

ATC Display System

Track Reports

ADS-B Ground Station provides Raw Data or Asterix Target Reports

ADS-B Central Processor provides Asterix Target Reports
Thales MAGS ADS-B System

ADS-B Server

- Allows controlled data sharing with adjacent sectors and/or states
- Able to integrate third party ground stations from any vendor
- Converts Asterix versions
- Routes data streams to multiple destinations
- Provides geographical filtering
- Provides ADS-B security screening

ADS-B Server for well-controlled Data Sharing
Special Case: Active ADS-B

Issue

➢ ADS-B is fundamentally a passive receive-only mechanism
➢ ADS-B aircraft identification is done via the flight plan number
➢ Target correlation is based on the 24 Bit address.
➢ Some ATM system installations however can still use only SSR Mode A code to correlate tracks to flight plan data.
➢ Older ADS-B MOPS Version Avionics does not deliver Mode A code

Mitigation

➢ Use of passively received replies of ADS-B aircraft to radar interrogations - if within Mode S radar coverage
➢ Additional transmitter, able to interrogate aircraft for their Mode A code – if outside radar coverage
ADS-B Security

AN OVERVIEW
What Type of Security?

1. Physical Security (fences, locks, guards, …)

2. Networks and Software driven Elements (addressed by Cybersecurity)

3. RF Security
ADS-B Security

- Simple protocol and signal structure, vulnerability discussed openly
 - e.g. presentations at DEFCON, BlackHat and others also featured on YouTube*

- Software-Defined Radio (SDR) Technology available at low cost
 - RX, but also TX available
 - Software and Documentation from the internet

- RF hacking is not anymore a challenge for experts and specialists

* Examples:
 - B. Haines, “Hacker + Airplanes = No good can come out of this”, DEFCON20,
 - A. Costin, A. Francillon, “Ghost is in the Air (Traffic)” Black Hat USA 2012
 - B. Seeker, “Hacking the wireless world with SDR – 2.0” Black Hat Europe 2014
ADS-B

![Diagram of ADS-B system with aircraft and processing units labeled DLH123 and AFR143]
ADS-B Spoofing Demonstration

Source: http://www.youtube.com/watch?v=NSLqRXyiBo

Flight Sim

SDR: ADS-B TX

ADS-B RX

ADS-B Processing

Scenario (cable)

CWP

DLH123

AFR143

SPOOF

ADS-B RX

HN March 2017
ADS-B Spoofing

Flight Sim

SDR: ADS-B TX

ADS-B TX

ADS-B RX

ADS-B Processing

Scenario (cable) = Scenario (antenna)

CWP

DLH123

AFR143

SDR: ADS-B TX

Scenario (cable) = Scenario (antenna)
ADS-B Meaconing – Change of Identity

Scenario (cable) = Scenario (antenna)
What can we do? (as Sensor Manufacturers)

ON ADS-B SENSOR LEVEL
ON CENTRAL PROCESSING LEVEL

• DETECT THREAT
• REDUCE OR PREVENT IMPACT ON ATM SYSTEM
• ALERT AUTHORITIES
Sensor level – ADS-B / WAM Ground Station

- Local view, raw data details available
- Target specific behavior
 - Anyone not behaving like a regular aircraft?
- Additional measurements
 - Consistency between measured and transferred data
- Spectrum characterization – not target specific
 - Anything unusual happening?
 - Number of targets, messages, message types…

How to treat “normal” anomalies / malfunctions?

Thales AX680
Integrated Receiver and Signal Processing Board
Digital, Software Defined Radio
High Sensitivity -91 dBm
Mode A/C/S
ADS-B Decoding DO260B
AL4/ED109A (SWAL3/ED153)

Spoofing Detection
Lab Demonstration at DFS
Central Level – ADS-B Server / WAM Central Processor

Group view, comparing data from several ground stations

- difficult to attack multiple sites in a consistent way
 - Spectrum characterization – not target specific
 - Target behavior
 - Additional measurements
 - Able to identifying observations as anomalies

Multilateration position calculation

- No need for high precision for this purpose
- Checking if movement and position consistent with ADS-B
- Even single TDOA (single hyperbolic line of position) is sufficient

Thales ADS-B Server
Security Screening for Thales and 3rd party ADS-B systems
Asterix Edition conversion
Geographical Filtering
Multiple Output Streams
Data Routing
AL4/ED109A (SWAL3/ED153)
Tracker Level – Multisensor Tracker / ATM System Level

- Global view – various sensor inputs, flight plans, background data
- Filtering, observing, characterizing targets
- Comparing ADS-B data to other sensor feeds – diversity is key!
- Eliminate false positives via flight plans and other sensors
 ➤ SWIM across sector borders
- If threat detected - alert supervisor! (or anyone else to alert?)
 ➤ To do what? ➤ operational Level
Results of R&D Project with DFS and Eurocontrol

- Ground Station prototype proven to detect various threats
 - Spoofing
 - Modification
 - Jamming
 - Detects also anomalies – great for conformance monitoring!

- False Alarm Rate not yet where it should be – continue within SESAR2020

- Central Processing System
 - ADS-B Server: Additional layer to ADS-B Threat Detection
 - WAM configuration rejects threats – difficult to spoof

- Decision to industrialize and integrate first set of functionalities into product
Thales ADS-B Solution

- Easy to implement, best performance, low risk
- Extremely reliable and robust solution
 - Maintenance free
 - Excellent record on low failure rates from the field
- Extremely low lifecycle cost
- Compliant to all international standards – type approved and certified by German Regulator
- Safe and secure implementation
 - on ADS-B level
 - on Network Level – Thales CyberSecurity
- Centralized or standalone architecture – tailored to customer needs
- Growth potential towards full WAM, Airport MLAT, and SBS System

ADS-B Hongkong
ADS-B Example Installations
Radar Surveillance Coverage

FL300 Radar

Procedural ATC in non-Radar Airspace

Many VHF outlets available, i.e. buildings, power, maintenance, links to ATC

Courtesy Airservices Australia
ADS-B + Radar Surveillance Coverage

FL300 Radar & ADS-B

Courtesy Airservices Australia
ADS-B Australia: Installation at Woomera

ADS-B antennas

Old Tower (to be removed)

Solar powered, passively cooled

Satellite Comms Link to ATC centre

Picture Courtesy Airservices Australia
ADS-B Countrywide Coverage in Australia

Picture Courtesy
Airservices Australia

30 Sites / 60 Receivers
The countrywide ADS-B System in Indonesia

Indonesia is a pioneer of countrywide ADS-B!

30 dual redundant ADS-B sites
+ 1 Test Site

ADS-B Coverage

Pictures courtesy ICAO / Airnav
ADS-B Countrywide New Zealand

28 Sites / 39 Receivers

Figure 165 – Airways Lab coverage at 24500 ft ASL
Figure 166 – Cantrona coverage at 24500 ft ASL
Figure 167 – Coronet Peak A coverage at 24500 ft ASL
Figure 168 – Coronet Peak B coverage at 24500 ft ASL

ADS-B Coverage @ FL245
France: ADS-B Outre-Mer
(La Réunion, N. Calédonie, ...)
(operational, complete)

ADS-B La Réunion – DTI Test Flight:
Range of one ADS-B ground station: 300NM

Picture Courtesy DTI
ADS-B La Réunion – DTI Tests
High altitude en-route traffic: range > 300 NM

Picture Courtesy DTI
ADS-B La Réunion – DTI Tests:
Island commuter traffic visible down to ground
NextGen/SBSS USA

SUBCONTRACT TO ITT EXELIS, NOW HARRIS
ADS-B USA
794 Stations

This image depicts complex surveillance coverage in a simplified graphical format. The image does not represent all conditions that will determine the actual coverage.

Picture Courtesy ITT
ADS-B & Broadcast Services - Principles

ADS-B: Transmission of GNSS-Derived Position & Identity via specialized Aviation Data Links – 1090 ES and UAT (978 MHz)

1090ES ADS-B Out

UAT & 1090 ADS-R: “Cross-Link” Rebroadcast

UAT & 1090 TIS-B: Uplink of Non-ADS-B Targets’ Radar Data

Ground Station

1090 TIS-B

1090 ADS-R

Data Fusion

Air Traffic Control Automation Systems

Weather Data

Traditional Radar

1090ES ADS-B Out

1090ES ADS-B In

1090ES ADS-R

1090ES TIS-B

UAT ADS-B Out

UAT TIS-B

UAT FIS-B

UAT ADS-R
Surveillance Broadcast Ground Station - SBGS

- Used in FAA SBS program
- Based on proven AX680 HW components
- 19", 8 HU form factor
- Includes multiple receivers, dual transmitters
- Redundant configuration

RX-Services 1030, 1090 and UAT

- Up to 6 channel ADS-B on 1090 ES
- Single channel UAT (978 MHz)
- Optional 1030 MHz receiver for TX blanking

TX-Services 1090 and UAT

- ADS-R crosslink
- TIS-B
- FIS-B

All services locally processed

FAA SBGS in redundant configuration
Coverage from Radio Stations

More than 300 radio stations are collecting data

Data from September 23, 2010
Status FAA SBS Program 06/2017

- Alaska
- Hawaii
- Guam and Saipan
Multilateration Systems

AIRPORT SURFACE MULTILATERATION (MLAT)
PRECISION APPROACH MONITORING (PAM)
WIDE AREA MULTILATERATION (WAM)
Fundamental Principle of Multilateration

MLAT/WAM CPS calculates surfaces of constant time difference

Transponder Reply or Mode S quitter

Transponder-equipped aircraft
- reply to interrogations from SSR, TCAS or multilateration systems, and
- emit unsolicited squitters

Multilateration Ground Stations (GS)

Signals received and time stamped by Ground Stations

Ground communications network

Multilateration Central Processing Station (CPS)

System Output:
- Aircraft reports
- Surveillance Data Processor
- Track reports
- ATC Display System

Multilateration measures Positions
Recapitulation: Multilateration Principle (TDOA)

A and B are a pair of ground stations receiving both a signal from an aircraft.

The range between aircraft and ground station is

$$ R = c \cdot (\text{TOA} - \text{TOT}) $$

The time difference TOA$_1$-TOA$_2$ thus corresponds to the range difference

$$ R_2 - R_1 = c \cdot (\text{TOA}_2 - \text{TOA}_1) $$

as the Time of Transmission TOT cancels in the difference.

($c =$ wave propagation speed)

At a given time, the aircraft is located somewhere on the line whose points have a constant range difference to the ground stations:

$$ R_2 - R_1 = c \cdot (\text{TOA}_2 - \text{TOA}_1) $$

This line is a hyperbola with the ground stations representing the focal points.

A third ground station in C gives two more differences

$$ R_2 - R_3 = c \cdot (\text{TOA}_2 - \text{TOA}_3) $$
$$ R_1 - R_3 = c \cdot (\text{TOA}_1 - \text{TOA}_3) $$

and thus two more hyperbolas follow.

The aircraft can be located at the intersection of the hyperbolas.
Recapitulation: Multilateration Principle (TSOA)

Ground station A is interrogating at TOI₁ an aircraft eliciting a response at TOT that is received by ground stations A and B.

The range between aircraft and ground station is

\[R = c \cdot (\text{TOA} - \text{TOT}) \]

with the unknown TOT, i.e.

\[\text{TOT} = \text{TOI}_1 + \frac{1}{2} \cdot (\text{TOA}_1 - \text{TOI}_1) \]

So that

\[R_1 = c \cdot \frac{1}{2} \cdot (\text{TOA}_1 - \text{TOI}_1) \]

\((c = \text{wave propagation speed})\)

Typical Accuracy Distribution from Theory

TDOA TSOA

Hyperbolic Elliptical

best best

worst worst

At a given time, the aircraft is located somewhere on the line whose points have a constant range sum to the ground stations:

\[R_1 + R_2 = c \cdot (\text{TOA}_1 + \text{TOA}_2 - 2 \cdot \text{TOT}) \]

or

\[R_1 + R_2 = c \cdot \left[\frac{1}{2} \cdot (\text{TOA}_1 + \text{TOA}_2) - \text{TOI}_1\right] \]

This line is an ellipse with the ground stations representing the focal points.

A third ground station in C gives another range sum:

\[R_1 + R_2 = c \cdot (\text{TOA}_1 + \text{TOA}_2 - 2 \cdot \text{TOT}) \]

\[R_2 + R_3 = c \cdot (\text{TOA}_2 + \text{TOA}_3 - 2 \cdot \text{TOT}) \]

and thus another ellipse follows.

The aircraft can be located at the intersection of the ellipses.
Multilateration Characteristics

<table>
<thead>
<tr>
<th>Advantages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Excellent Performance – depends heavily on system geometry</td>
</tr>
<tr>
<td>▶ High update rate – every received signal used to locate target</td>
</tr>
<tr>
<td>▶ Mode S communication possible (downlink of aircraft parameters)</td>
</tr>
<tr>
<td>▶ Same ground stations as for ADS-B – intrinsic ADS-B capability</td>
</tr>
<tr>
<td>▶ Inherent Integrity/Security Features</td>
</tr>
<tr>
<td>▶ Low ground equipment cost – Low lifecycle cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Multiple sites required,</td>
</tr>
<tr>
<td>▶ No of sites strongly depend on vertical coverage limit and terrain</td>
</tr>
<tr>
<td>- Avoid over-specification that may lead to excessive complexity</td>
</tr>
</tbody>
</table>
Real World Constraints

- Quasioptical Propagation @1090 MHz
 - Not much diffraction (good)
 - Obstruction
 - Multipath

- Nutzung des Kanals durch andere Systeme
 - SSR, ACAS/TCAS, IFF, ADS-B
 - Hohe Funkfeldbelastung – Einschränkung der Empfangswahrscheinlichkeit
 - Unkoordinierter Kanalzugriff („Aloha“)
Effects and Anomalies

Transponder Antenna with „omnidirectional“ Pattern?
Main Reasons for good or bad Performance

- Centralized Sensors (Radar, ADS-B, …):
 - Equipment characteristics
 - Algorithms applied
 - Chosen antenna pattern

- Distributed Sensors (WAM, PAM, MLAT, …):
 - Equipment characteristics (Ground Stations)
 - Algorithms applied (Central Processing Station, CPS)
 - Chosen antenna patterns
 - Synchronisation Methods
 - Number and constellation of ground station sites
 - Minimum: 3 Stations for 2D, 4 Stations for 3D Position
Comparison ADS-B vs Multilateration

<table>
<thead>
<tr>
<th>Criterion</th>
<th>ADS-B</th>
<th>Multilateration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Equipment</td>
<td>Single Ground Station for coverage</td>
<td>Multiple Ground Stations for coverage</td>
</tr>
<tr>
<td>Position Source</td>
<td>Dependent Surveillance: Onboard Navigation Position via Datalink, usually based on GPS</td>
<td>Independent Surveillance: Own Measurement of Position</td>
</tr>
<tr>
<td>Operational Principle</td>
<td>Passive</td>
<td>Passive/Active (e.g. Baro Altitude)</td>
</tr>
<tr>
<td>Equipage</td>
<td>Needs ADS-B – capable Mode S transponder</td>
<td>Needs Mode S or Mode A/C transponder, also supports ADS-B</td>
</tr>
<tr>
<td>Coverage</td>
<td>As defined by ground station antenna and terrain</td>
<td>Tailored by ground station deployment</td>
</tr>
</tbody>
</table>

Ground Communication Network is needed to each Ground Station
Operational Ground Station Equipment Characteristics (1/2)

- **Reception:**
 - High Sensitivity – long detection range
 - Superb de-garbling – good performance even in high density airspace

- **Transmission:**
 - Dual Channel 1030 and 1090 MHz
 - Power Controlled up to 1000W
 - Multirole Transmitter: interrogation, system synchronization backup, test target
Operational Ground Station Equipment Characteristics (2/2)

- **Ground Station Interfacing:**
 - Low bandwidth requirements
 - Dual raw data, dual independent Asterix Cat 21 output per channel

- **Ground Station Maintenance**
 - Maintenance-free equipment
 - Full remote access via network
 - Remote diagnostics via BITE, internal oscilloscope and spectrum analyzer
 - Dual SW, FW, OS, Configuration partitions for easy upload during operation
 - Failsafe remote update
Ground Stations Configurations

- Single or dual Sector
- Local redundant or spacially redundant
- Receive-only (GSR) or Receive-Transmit (GST)

Subrack
Indoor Cabinets
Outdoor Cabinet
Operational System Characteristics

- **System Synchronization for TOA Time Stamping**
 - Distributed Timing (independent time stamping to UTC in each ground station)
 - Dual independent synchronization capability – not depending on GPS alone

- **System Interfacing:**
 - Asterix Cat 19, 20, 21, 23, 25, 247 – and also Cat 34, 48 (radar-like) in pseudo rotation
 - Multiple independent output streams configurable
Redundant Central Site Architecture

Centralised Control and Monitoring System

- Fully redundant Master-Slave Setup
- Any number of remote control positions (RCMS)
- Real time system performance monitoring
- Full data logging and replay
How to build a good WAM System

- Excellent Equipment Performance
- Versatile Algorithms tuned as needed
 - Accuracy, output rate
 - Probability of Detection, interrogations
 - Coverage Volume
- Good Site Selection Process
 - Performance
 - Coverage
 - Operating Cost (number of sites to maintain)
- System has to be managed centrally

Number of Sites

Competitors

TOTAL

New

Thales

A

B

C

D

Managing Large Systems

- Multilateration Systems are fully remote operated / remote controlled
- Maintenance-free
- Larger, more complex systems can be built

Availability becomes an issue – main reasons:
- communication network issues,
- power loss

System Resilience is required

South Africa: Operational WAM Implementation (approx. 100 Ground Stations)
Multilateration System Resilience (1/2)

Classical N-1 System Concept

- **System State: Normal**
 - N-0 Normal
 - Data: Yes
 - Ground Station OK

- **System State: Degraded**
 - N-1 Degraded
 - Data: Yes
 - Ground Station NOK

- **System State: NOGO**
 - N-2 NOGO
 - Data: No
 - Ground Station NOK

- **System State: NOGO**
 - N-2 NOGO
 - Data: No
 - Ground Station NOK
Multilateration System Resilience (2/2)

Solution for improved Availability – Virtual WAM

System State: Normal

System State: Degraded

System State: Degraded

System State: Degraded
WAM Estonia with Virtual WAM Service Volumes

Remote Control Screens

Coverage and Service Volumes (24 Ground Stations)
Virtual WAM also for Airport MLAT?

- **Separate Areas can be identified**
 - Runways systems
 - Aprons
 - Approach areas

- **Even Airport MLAT can benefit from virtual WAM principle**
MAGS

- WAM, TMA, Airport surface, as well as, airport Precision Approach Monitoring
- Great flexibility and scalability to tailor performances to customer needs
- Highly efficient and safe
 (high accuracy, high refresh rate, dual synchronisation, AL4/ED109)
- In operational use e.g. by DFS (sole means of separation in Frankfurt approach) and French DGAC (MLAT Lyon, Nice) in complex operational environments
- Simultaneous Multilateration and ADS-B surveillance
 (includes full ADS-B processing)
- Multiple outputs (including virtual-radar cat 48) to ease interface to ATM system
- MAGS performance exceeds ED129, ED117 & ED142 requirements
WAM, PAM, MLAT
Example Implementations
NICE – Aéroport Côte d’Azur, France

- France’s 3rd largest airport
- Approx. 160,000 movements/year
- Approx. 11 million passengers/year
- Serving both domestic and international destinations
- Significant share on general aviation and helicopter traffic serving Monaco, Cannes, and the entire Côte d’Azur
- DTI contract awarded to Thales to supply MAGS airport multilateration system (plus a WAM option)

MAGS – Multilateration and ADS-B Ground Surveillance System
Ground Station Sites on Airport
Ground Station Sites outside Airport
Some Sites on the NICE MLAT System
WAM Afghanistan

COUNTRYWIDE AND MAZAR-E-SHARIF TMA
Country-wide WAM Implementations

Afghanistan country-wide WAM

- System operational
- WAM + ADS-B 1090 ES
- Operation via VSAT
- Difficult Environment

![Fortified Ground Station Site](image)

![ADS-B and WAM Coverage in Afghanistan](image)
Local Constraints

- extreme climatic conditions
- earth quake area
- not much infrastructure
- no safe transport routes
- extreme security risk outside ISAF camps
PAM FRA

PRECISION APPROACH MONITOR FRANKFURT
PAM FRA Project

Customer
- DFS
- Main Drivers:
 - High update rate in final approach
 - High accuracy
- Main Task
 - Provide Multilateration Surveillance within 128 x 80 NM coverage region around Frankfurt International Airport
 - Focus on closely parallel approaches
 - Primary means of Surveillance in approach sectors

Source: Fraport AG
Main Parameters

- Output Probability of Detection: PD ≥ 97%
- Up to 500 targets Mode A/C & S in coverage at any one time (plus > 500 targets outside to be detected to discard)
- Reporting interval: 1 second (Radar: 4.8s, 10s…)
- Direct plot output (no coasting, extrapolation or smoothing)
- Horizontal Position Accuracy: HPA ≤ 50m RMS (ED142: 150 m)
- Probability of Code Detection: PCD ≥ 97% (Mode A), ≥ 96% (Mode C)
- Altitude Timeout 1s
- Dual synchronisation required (GPS and RF Time Beacon)
- N-1 redundancy
Siting Model

Also modelled:
- all N-1 cases
- all performances
- Various target altitudes
Siting Concept

- DFS concluded a comprehensive initial site survey presenting a selection of more than 80 sites for tenderers to choose from.
- Thales identified 34 sites (12 of these for airport GND alone) and their respective role:
 - Main driver: low level visibility, rather than power budget.
 - Re-use existing sites as far as practical.
 - Requires system adaptability: antenna types, EMC, communication, packaging, lightning protection, etc.
 - Confirmed findings in final site survey.
Typical PAM FRA Ground Station Sites
Operational WAM Coverage
Physical WAM Coverage
WAM and ADS-B Coverage

Blue = ADS-B
Accuracy PAM FRA

<table>
<thead>
<tr>
<th>Deviation Type</th>
<th>Mean</th>
<th>SD</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Deviation</td>
<td>18.9</td>
<td>27.9</td>
<td>33.7</td>
</tr>
<tr>
<td>Across Track Deviation</td>
<td>2.5</td>
<td>25.5</td>
<td>25.6</td>
</tr>
<tr>
<td>Along Track Deviation</td>
<td>-0.4</td>
<td>21.9</td>
<td>21.9</td>
</tr>
<tr>
<td>Latency</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Calculated by DFS comparing WAM to ADS-B across track error using known good ADS-B aircraft (DLH, BA, RYR).

Across track error eliminates latency effects of ADS-B.

Source: DFS

EDFH low Overflight (100 ft GND)
EDFH Traffic Ccircuit (500-1000 ft GND)
Reference: GPS Tracker
Comparison of Low Altitude Coverage

PAM FRA

MSSR Radar

Source: DFS

PAMFRA Coverage boundary
Comparison of Update Rates PAMFRA – ASR – MSSR

- **PAM FRA WAM (1s)**
- **ASR Radar (4.8s)**
- **MSSR Radar (10s)**

(Testflight: New Runway North – Frankfurt Airport)

Source: DFS
Now switching from Radar (4.8s) to WAM (1s)

PAM FRA is operational – sole means of surveillance in Frankfurt Approach

Quelle: DFS
WAM South Africa

World’s largest WAM system

- ~100 Ground stations
- Dual Central Processing
- Implemented in two phases

Coverage Area Phase 1 (yellow) and 2 (red)
WAM in Marshall project

9 WAM Clusters consisting of

- 112 Ground stations
- 9 Central Processing Locations
- Remote Control and Monitoring
- Engineering Services (Design, FAT, Commissioning), Installation Support and Training
- WAM Project Management

Subcontract to AQUILA, a Joint venture of Thales and NATS
Thales Worldwide Non-Radar Surveillance References

Thales has delivered over 2,000 ADS-B and Multilateration Ground Stations around the World

Last update: October 2016

© Thales 2016 All rights reserved.
Thank you very much! Happy to answer Questions

Holger Neufeldt
Product Manager,
ADS – B and MLAT Systems
Phone: + 49 7156 353 28 230
Email: holger.neufeldt@thalesgroup.com