ADS-B technology
The Experience in Australia
This presentation (in 2 parts)

PART 1: Australian experience
• What is ADS-B?
• The environment before ADS-B
• The environment with ADS-B
• Benefits
• How was it achieved?
• The timeline
• Lessons learnt
• What was necessary?
• Work in progress

PART 2: Perspective on ADS-B issues
• Integration with ATC system
• GPS reliance/Spoofing/Privacy
• Bad ADS-B data
• Multilateration
• Other State plans
• DO260, DO260A, DO260B & retrofit
What is ADS-B?

- Aircraft determines its position using GPS
- Broadcasts position, identity, altitude and velocity information (ADS-B out)
- Ground stations receive the broadcasts and relay the information to air traffic control
- Other aircraft receive broadcasts & display to pilot (ADS-B in)

Slide courtesy of Airservices Australia
Better performance than radar

- Better accuracy
 - except very close to radar
- Higher update rate (2 * per second)
- Each report has an integrity measure
 - unlike radar
- Significantly lower cost (1/10th)
- More data
 - eg airborne derived velocity vector

Photo courtesy of Airservices Australia
What avionics are needed?

3 major elements
- GPS
- Transponder
- Callsign entry

- Airframe dependent
- Aircraft may have some elements already
- Transponder
 - ADS-B and Radar
- Multiple solutions
 - Multiple vendors
 - Australia uses 1090Mhz ONLY. No UAT is permitted.

TRANSPOUNDER VARIANTS
- DO260 (Version 0)
 - Adopted by Asia Pac till at least 2020
 - Used for 5Nm & 3 Nm separation in Australia
- DO260A (Version 1)
- DO260B (Version 2)
 - Required by USA/ Europe

Position VARIANTS
- GPS SA ON
- GPS SA aware
- WAAS (OK, not required)
- INS (not allowed)
The environment before ADS-B (2003)

- A continent with only 20 radars
- 11% of worlds airspace, ~1200 controllers, ~12,000 GA aircraft, 480 airports, user pays fees
- Procedural control with VHF voice communication
- Procedural ATC at FIR boundaries
 - mismatch of systems, cultures, language etc
- Growing traffic
- A new airline fleet
- High cost of radar ownership
The environment with ADS-B

- Nature of ATC in Australia was transformed
 - > 70 Ground stations
- ADS-B has provided ATC separation services for more than a decade.
- Transition from “procedural” ATC to surveillance-based ATC
- ADS-B separation
 - 5 miles enroute
 - 3 miles terminal area (Perth & Melbourne)
- ADS-B only at remote towers
- ADS-B supporting surface surveillance
- “Radar identified” is now just “Identified”
Operational Benefits

- More clearances at optimal levels, fewer diversions, higher predictability
- No stepped climb/descents
- Reduced voice communications
- Reduced ATC & Pilot workload
- Increased Air Traffic Capacity
- Enables ADS-B IN use
Safety Benefits

- ATC situational awareness
- ATC Safety nets
- Reduced voice channel congestion
- FIR boundary safety
- Pilot situational improvement
- Search and rescue capability enhanced

Photo courtesy of Airservices Australia

ADS-B only display at remote control towers: Operational at 5 locations
Airservices Australia video
Australia shares ADS-B data with Indonesia and soon with PNG

- Improved safety at FIR boundaries (common view of traffic)
- Operational Feb 2010
- Situational awareness
- Automated Safety nets
- Supports procedural ATC
Economic Benefits

- **ATC provider**
 - Less radars required
 - Increased capacity at lower cost
 - Less ATC staff per flight

- **Airline**
 - Operational efficiency
 - Fuel & Operating time
 - Lower airways charges
 - Compared to alternative
 - In Australia, Airspace users pay for all facilities (not the Government)
 - RVSM monitoring
 - Without special flights or height monitoring systems

Photo courtesy of Airservices Australia
Impact on radars

- Three enroute radars were scheduled to be removed
 - Reduce costs & no significant loss of service

- First radar (Paraburdoo) was disconnected on 21 June 2017
 - See Australian AIC H12/17 “Paraburdoo radar decommissioning”
 - Airspace now ADS-B ONLY

- Second radar (Sydney basin) disconnected November 2017
 - Reduced radar coverage

- Third radar in progress (Perth TMA). Safety work complete.

- Australia uses ADS-B as truth data to test radars!
How was this achieved?

Learning, Demonstration, Co-operation, Hard work

- A step by step implementation over more than a decade.
 - A 24/7 operational trial & demonstration (Bundaberg QLD in 2004)
 - Demonstrated success: Seeing is believing
 - Deployment of 28 ground stations based on a one page business case
 - Demonstrated success: Doing is better than talking

- Significant stakeholder engagement
 - Aircraft New & Old, Big & small
 - International, Regional, Bizjets, General aviation
 - Based on: What do we agree on?” and “How do we get there?”
Australian ADS-B avionics Regulations & Mandate were necessary to:

- Define the acceptable standards.
- Prohibit misleading or non compliant ADS-B
 - Note ICAO Regional Doc 7030 requirements
- Require all IFR to have ADS-B from Feb 2017
 - A few limited exemptions
 - VFR exempt, but new transponders must be ADS-B capable
 - Forward fit requirement for SA aware GPS for aircraft manufactured after Dec 2016
ADS-B avionics fitment debate

• Like the SSR transponder fitment debate
 - 40 years ago

• How will it be viewed 20 years from now?
Industry requested the Mandate

- Industry vision for “Surveillance in Australia” developed by stakeholders (ASTRA see www.astra.aero)
 - Synchronised investment (ANSP & Operators)

- In 2010 the Industry stakeholders (ASTRA) reached a compromise position and asked regulator for Mandates

- ASTRA includes:
 - Major airlines
 - RAAA (Regional airlines)
 - AOPA (GA)
 - ABAA (Bizjets)
 - ASAC (Sport aviation)
 - Airservices Australia
 - AAA (Airports)

Presentations & Demonstrations and papers to trade shows, organisations and even to politicians at Parliament house
Australia had numerous mandates as it learnt & phased in the technology
(Historical perspective – this would not be necessary for others)

<table>
<thead>
<tr>
<th>Effective date</th>
<th>Mandate</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 June 2007</td>
<td>Non compliant ADS-B must be disabled before flight [no bad data]</td>
<td>Regulation in place (see CAO 20:18)</td>
</tr>
<tr>
<td>12 Dec 2013</td>
<td>Operation at/above FL290 requires ADS-B</td>
<td>(All airspace categories)</td>
</tr>
<tr>
<td>6 Feb 2014</td>
<td>All IFR aircraft first registered after 6 Feb 2014 must have ADS-B out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VFR aircraft first registrations must have ADS-B capable transponder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in class A,B,C,E or above 10,000 feet)</td>
<td></td>
</tr>
<tr>
<td>4 Feb 2016</td>
<td>All IFR must have ADS-B out within 500 Nm Perth to north & east</td>
<td>Regulation in place (see CAO 20:18)</td>
</tr>
<tr>
<td></td>
<td>(Applies to aircraft operating in Class A,B,C,E)</td>
<td></td>
</tr>
<tr>
<td>8 Dec 2016</td>
<td>ADS-B position source must be SA aware for aircraft manufactured after</td>
<td>Regulation in place (see CAO 20:18)</td>
</tr>
<tr>
<td></td>
<td>date</td>
<td></td>
</tr>
<tr>
<td>2 Feb 2017</td>
<td>All IFR must have ADS-B out in Australia</td>
<td>(All airspace categories)</td>
</tr>
</tbody>
</table>
Australia’s ADS-B Timeline

2004 – 2018

Mandate 1: No bad ADS-B transmissions
- **2009**: DO260B Published

Mandate 2: Effective Above FL290
- **2010**: FAA Mandate Published
- **2012**: Mandate 2 Approved

Mandate 3: Effective All IFR
- **2014**: Mandate 3 Published

Mandate 4: Effective SA Aware GPS (New Aircraft only)
- **2016**: Mandate 4 Published

Discussion & ADS-B Operational trial
- Define ADS-B standards (Avionics)
- Agree 5 Nm separation for trial

Multiple ground stations being deployed
- Voluntary fitment (5 Nm Separation services)

System Operational countrywide
- Remote tower use
- Terminal area use (3 NM)

Greg Dunstone
ADS-B in Australia

MANDATE SYSTEMS

- **MANDATE 1**: MANDATE 1: No bad ADS-B transmissions
- **MANDATE 2**: MANDATE 2: Effective Above FL290
- **MANDATE 3**: MANDATE 3: Effective All IFR
- **MANDATE 4**: MANDATE 4: Effective SA Aware GPS (New Aircraft only)
ADS-B Transition

- **Services were provided before the mandate**
- **Airservices gradually increased service**
 - Initially for situational awareness & safety nets
 - Then 5Nm separation in a mixed equipage environment
 - Equipped aircraft separated by 5 nautical miles
 - Non equipped aircraft separated procedurally
- **Even in the mandated environment, sometimes exempt aircraft are separated procedurally**

Radar, ADS-B and ADS-C symbols on live ATC display during transition

Photo courtesy of Airservices Australia
Lessons were learnt

- Keep focussed on the outcome

- Remain flexible and able to compromise
 - 80% now is better than 95% in 10 years

- Do the right amount of planning
 - Not too little, not too much
 - Have a “Vision”
 - Demonstrated performance is powerful

- Considerable ongoing effort is required no matter what the plan
 - Fault finding, bugs in equipment/procedures
 - Education, media, politics
 - Keeping everyone “on track”
Surveillance and Navigation were changed together

Navigation
- GPS based navigation instead of conventional navaids
- With a terrestrial sparse backup network

Surveillance – using navigation source
- ADS-B instead of radar
- With a radar based backup network
Navigation program

- The industry equipped aircraft with suitable GPS.
 - Air transport jets used GPS already
 - GPS became mandatory for IFR in 2016

- Paves the way for PBN efficiency benefits

- Airservices decommissioned 179 navaids in April 2016 (See Australian AIC H11/16)

 - The alternative would have been to replace them at enormous cost to their customers.
Contributions to achieve this:

- **Air Navigation Service Provider (ANSP) provided:**
 - ATC technical capability (ADS-B receivers, ATC system)
 - ATC procedures
 - Monitoring capability, statistics, information flow to operators, installers, airlines
 - Problem identification, negotiation of solutions, engagement in avionics issues
 - Training & knowledge transfer about ADS-B, about GPS, about avionics, about ATC systems

- **ANSP & Regulator provided**
 - Monitoring capability (are installations good enough, equipage rate statistics)
 - Managing exemptions & failures etc

- **Airlines provided**
 - Airline compliance, installation (takes time)
 - Procedures & processes for failure conditions

- **Aircraft OEMs & Avionics companies**
 - Products & customer support

- **All stakeholders provided**
 - Training & knowledge transfer
 - A will to succeed
Regulator Activity

• Regulation to
 - Define approved type of avionics
 - Prohibit misleading data
 - Require ADS-B equipage for operations in certain airspace and for certain aircraft
 - Forward fit requirement for SA Aware GPS
 - Define when mandatory and allow time for fitment
 - Follow-up and enforcement

• Training & education

 Eg: See CASA brochure:

• Procedures to manage exemptions
Engagement internationally

- Significant engagement to ensure compatibility & that Operators could equip with available products
 - Standard setting (ICAO, RTCA/Eurocae)
 - Airframe companies
 - Avionics companies
 - FAA, Eurocontrol, Navcanada, (Airservices)
 - Our Neighbours: Indonesia, PNG
 - IATA

- Least demanding requirement allowed (DO260 and SA ON)
 - Supporting current fleet
 - Supporting 3Nm & 5Nm standards
 - Recognising forward fit transition to better standards
 - Recognising FAA & Eurocontrol rules will push DO260B
 - FAA requirement for SA aware
ICA O in Asia Pacific

- APANPIRG ICAO ADS-B Study & Implementation WG (March 2003 → April 2016)
- Guidance Documents available
 - https://www.icao.int/APAC/Pages/edocs.aspx
 - ADS-B Implementation Guidance Document (Version 10)
 - Safety case guidance

- ADS-B is used in Region (Singapore, China, Vietnam, India, Indonesia, PNG, New Zealand, Mongolia, Hong Kong....)

- ADS-B data sharing and VHF outlet sharing is fully operational

- Asia Pac agreed that no “operational approval” process is required
ICAO Supports ADS-B

- Technical standards (Annex 10)
 - Version 0 = DO260
 - Version 1 = DO260A
 - Version 2 = DO260B

- Separation standards (SASP)
 - Circular 326

- PANS ATM Doc 4444
 - Wording now “Surveillance” instead of “Radar”

- ASBUs
Work continues in Australia:

- Trial: ADS-B only for small airport surface surveillance
- Examine: ADS-B only for Parallel runway Monitoring operations
- Examine: Space based ADS-B
- Lower cost avionics (& standards) to enable VFR voluntary equipage

See http://www.airservicesaustralia.com/projects/ads-b/
What does ATC think?

- In more than 40 years experience providing technology to ATC, it was the one that was very enthusiastically accepted – and more coverage volume was demanded.

General Manager ATC (at the time) said “ADS-B is better than sliced bread”
A potential timeline to transition:

SYSTEMS
- Modify ATC system (& ATC simulator?) to accept ADS-B
- Deliver operational benefits for those equipped. Demonstrate value
- Separation services (for all)

ATC procedures & training
- Adapt ATC procedures for local conditions
- ATC training as required
- Time for equipage (>3 years)
- Monitor & report fitment rate, support, advise airlines/operators, address issues
- Develop compliance procedures & exception management

Regulator
- Develop & publish mandate
- Prepare tools to monitor & support fitment (ANSP or Regulator)

Safety
- Develop safety case for local environment
- Validate safety requirements & assumptions (SA)
- Validate safety requirements & assumptions

All
- CONTINUALLY CONSULT & Engage all stakeholders

Potential Critical path due ATC system modification and acquisition

Potential Critical path due avionics equipage lead time (normally 5 years)
One minute break – before Part 2

The Blue mountains west of Sydney: ADS-B receiver at Kings Tableland to left.
PART TWO : A Perspective on ADS-B issues

ADS-B testing on B717 Qantaslink regional fleet
How can I connect ADS-B to ATC?

Optimum / Preferred: Upgrade ATC system to accept ADS-B
- Simple tracking & matching with flight plan
 - Flight ID, Mode A (if available), ICAO 24 bit (least desirable)
 - Include safety nets
- Flight plan designators
- Possible different ATC symbology

Sub-optimal: Convert ADS-B messages to radar like messages
- Pseudo radar rotation
- Performance still better than radar
- Potential issues if no Mode A code (some old ATC systems require it)
 - Can fuse based on ICAO 24 bit if Mode S radars are used

ATC System
- Process ADS-B data & fusion
- Match with flight plan
- Safety nets
- Flight plan designators

Radar only ATC System
- Process & fuse “radar data”
- Match with flight plan
- Safety nets

Greg Dunstone
ADS-B in Australia
Claim: We don’t have a Conops

- The Conops could be as simple as to “use ADS-B as if it is radar”

- Do you have a radar CONOPS?
 - Cut and paste!
 - Change the word “radar” to “surveillance”

- Don’t make it complicated
Claim: Aircraft aren’t equipped!

- That’s up to the ANSP, the regulator, the customers the Industry & the Government.
 - They won’t all equip until you have a mandate

- There is work to do, to “herd the cats”
 - To get agreement
 - To make it clear that it is good strategy & the benefits exceed costs

- Each State can require equipage
 - Choose whether DO260 is adequate (most airliners are already equipped)
 - DO260B is preferred for new fitments
 - DO260 is used for radar like applications including 3Nm and 5Nm separation in Australia
 - GPS SA aware preferred – forward fit requirement

- If you wait till everyone is equipped you will never progress
Claim: Some aircraft give bad data

- Initially true - It will remain the case unless you act.
 - What is the impact on ATC operations when experienced?
 - Is radar data always perfect? No

- There are some known software or installation errors
 - Like faulty SSR transponders. They need to be fixed.
 - Investigation and root cause work is ongoing, as for transponders
 - Compliance activity by regulator required

- Regulation required to prohibit bad transmissions
 - Non compliant transmissions must have NIC/NUC=0
 - See Asia-Pac ICAO 7030

- Most bad data is ADS-B transmissions with “INS position source”
 - In early days were seen with NUC* or NIC*=0 and discarded by ATC system
 - But remained a favourite advertising gimmick by multilateration vendors
 - No longer seen in Australia – because
 - ADS-B is mandatory for IFR. All INS aircraft have ADS-B with GPS position source

* ADS-B reported integrity

All Airframe OEMs
All major avionics vendors
New and Old equipment
ADS-B depends on GPS

- As does much of society
 - Banks, Public Land transport, Pizza delivery
 - Enormous incentive to maintain it

- In Australia – a robust radar backup network in critical areas
 - A level of insurance against failure

- The alternative could be NO surveillance
Claim: ADS-B - spoofing

- ADS-B data between aircraft and receiver can be spoofed & is not protected by encryption
 - As a one-way transmission, encryption key distribution is problematic
 - Change would take 15+ years & require all avionics worldwide to change.

- No other technical system in civilian ATC is encrypted today including
 - Voice communication
 - Navaids
 - FANS1A Data link
 - Mode A, Mode C and Mode S radar

- One needs to look at total risk, consequences & mitigations
 - Spoofing can be considered equivalent to denial of service (surveillance failure), or equivalent to false radar targets
 - One must balance between security/safety improvement and risk
 - Air Traffic control is not determined by surveillance alone
Claim: ADS-B – privacy concern

- Mode S and TCAS transmissions uniquely identify each airframe
 - Privacy was lost when TCAS & Mode S was implemented in 1970s
 - It is easy to listen to 1090 MHz replies to Mode S radars

- Availability of low cost digital receivers makes it easier to receive

- ADS-B itself is a minor player in the loss of privacy – it adds position (multilat can get position without ADS-B)

- Somewhat like character recognition of car licence plates for tollways

Greg Dunstone
ADS-B in Australia

Mode S transponder

Without ADS-B

All TCAS aircraft have Mode S transponders

Autonomously Transmits worldwide unique 24 bit code every 1 second

Most TRANSMIT IDENTITY when so interrogated by Mode S radar
Claim: Multilateration is the solution

- A good tool for some applications (e.g., surface surveillance or PRM) during transition to ADS-B

- Has a low cost of acquisition from supplier but is outweighed by high cost of ownership & complexity
 - Communication links
 - Multiple site ownership (lawyers, leases, power, shelter, management etc)
 - Ongoing “adjustment”
 - Failure modes & duplication issues (how do you test?)
 - Use of omni interrogators (1030Hz pollution)
 - Much higher cost than ADS-B alone

- Australia has 2 WAM systems for enroute & PRM applications
 - No plans for more.
 - Hopes to replace all existing WAM systems with ADS-B
<table>
<thead>
<tr>
<th>State</th>
<th>What</th>
<th>When effective</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>At or above FL290</td>
<td>Dec 2013, Feb 2017</td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td></td>
<td>All IFR all levels</td>
<td></td>
<td>Looking at TSO199 for GA</td>
</tr>
<tr>
<td>USA</td>
<td>Most aircraft in controlled airspace</td>
<td>Jan 2020</td>
<td>DO260B Required</td>
</tr>
<tr>
<td>Europe</td>
<td>Aircraft operating IFR >5,700KG or >250KTAS cruise</td>
<td>June 2020</td>
<td>DO260B Required & SA ON accepted</td>
</tr>
<tr>
<td>UAE</td>
<td>All IFR</td>
<td>Jan 2020</td>
<td>DO260B Required</td>
</tr>
<tr>
<td>Singapore</td>
<td>At or above FL290 on specified routes</td>
<td>Dec 2013</td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td>Vietnam</td>
<td>At or above FL290 on specified routes</td>
<td></td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>At or above FL290 on airways L642 and M771.</td>
<td>Feb 2016</td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td>Indonesia</td>
<td>At or above FL290</td>
<td>Jan 2018</td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td>Taiwan</td>
<td>At or above FL290 on two routes</td>
<td>Sept 2016, Dec 2019</td>
<td>DO260 & SA ON accepted</td>
</tr>
<tr>
<td>Colombia</td>
<td>All airspace</td>
<td>Jan 2020</td>
<td>DO260B</td>
</tr>
<tr>
<td>China</td>
<td>Proposed and currently under consultation</td>
<td>July 2019, Dec 2022</td>
<td>DO260</td>
</tr>
<tr>
<td></td>
<td>Proposed - All aircraft in controlled airspace</td>
<td></td>
<td>DO260B</td>
</tr>
<tr>
<td>New Zealand</td>
<td>NPRM released - All aircraft above FL245</td>
<td>31 Dec 2018, 31 Dec 2021</td>
<td>DO260 (with forward fit for DO260B)</td>
</tr>
<tr>
<td></td>
<td>Proposed - All aircraft in controlled airspace</td>
<td></td>
<td>Looking at TSO199 for GA</td>
</tr>
<tr>
<td>Canada</td>
<td>No mandate proposed. Preferential service in Hudson Bay</td>
<td></td>
<td>DO260 & SA ON accepted</td>
</tr>
</tbody>
</table>
DO260 and SA ON GPS

- **DO260B** has more functionality, eg
 - Better for Surface Surveillance
 - Supports Selected altitude warning
 - Is required by some air-air applications

- **DO260, DO260A and DO260B** have identical accuracy
 - But **REPORTED** accuracy is different
 - Accuracy is a function of GPS geometry
 - Radar has no reported accuracy nor reported integrity

- **SA aware GPS** provides better reported integrity and better reported accuracy.
 - Hence better availability for a defined containment radius
 - It is desirable. A forward fit requirement exists in Australia.

Greg Dunstone

ADS-B in Australia

ICAO APANPIRG – adopted DO260

Picture is a landing by ADS-B equipped Dash 8 at Lord Howe Island
The Retrofit challenge

- Whilst DO260B and SA aware are better and desirable
 - most fleets have a large percentage of DO260 aircraft
 - It is usually somewhat expensive to swap to DO260B
 - More than software – needs pin wiring

- A good case can be made that DO260 & SA ON are good enough for current applications but probably not good enough for the generational paradigm shift required in future.

- One strategy is to accept DO260 initially and slowly transition to DO260B later
 - Avoids having to immediately retrofit half the fleet
Summary

- **ADS-B is mature and in operational use for separation for more than a decade.**
 - Higher performance surveillance at lower cost (compared to radar)

- **There is cost of delay**
 - Higher safety risk compared to alternative - depending on environment
 - Radar cost of ownership
 - Delay of benefits to airlines
ADS-B Technology was flying in 1994

It is now widely fitted and time for Industry to derive maximum benefit

Why delay?
Thank you for your attention.

Questions?
The Australian ADS-B mandate

- See https://www.casa.gov.au/standard-page/key-timelines

- See CAO 20:18
9B.3 If an aircraft carries ADS-B transmitting equipment for operational use in Australian territory, the equipment must comply with an approved equipment configuration.

9B.4 If an aircraft carries serviceable ADS-B transmitting equipment for operational use in Australian territory, the equipment must transmit:

(a) a flight identification that corresponds exactly to the aircraft identification mentioned on the flight notification filed with ATC for the flight; or
(b) if no flight notification is filed for the flight — a flight identification that is:
 (i) for an aircraft registered on the Australian Civil Aircraft Register and operating wholly within Australian territory — the aircraft’s registration mark; or
 (ii) for an Australian aircraft registered by a RAAO — in accordance with the organisation’s operations manual; or
 (c) another flight identification directed or approved by ATC.

9B.5 If an aircraft carries serviceable ADS-B transmitting equipment that complies with an approved equipment configuration, the equipment must be operated continuously during the flight in all airspace at all altitudes unless the pilot is directed or approved otherwise by ATC.

9B.6 If an aircraft carries ADS-B transmitting equipment which does not comply with an approved equipment configuration, the aircraft must not fly in Australian territory unless the equipment is:

(a) deactivated; or
(b) set to transmit only a value of zero for the NUCp or NIC.

Note It is considered equivalent to deactivation if NUCp or NIC is set to continually transmit only a value of zero.

9B.7 However, the equipment need not be deactivated as mentioned in paragraph 9B.6 if the aircraft is undertaking an ADS-B test flight in V.M.C. in airspace below FL 290.

9B.8 On and after 12 December 2013, any aircraft that is operated at or above FL 290 must carry serviceable ADS-B transmitting equipment that complies with an approved equipment configuration by meeting the conditions for approval set out in Appendix XI.

9B.9 An aircraft:

(a) that is manufactured on or after 6 February 2014; and
(b) that is operated under the I.F.R.;

must carry serviceable ADS-B transmitting equipment by meeting the conditions for approval set out in Appendix XI.

9B.10 On and after 2 February 2017, an aircraft:

(a) that is manufactured before 6 February 2014; and
(b) that is operated under the I.F.R.;

must carry serviceable ADS-B transmitting equipment that complies with an approved equipment configuration by meeting the conditions for approval set out in Appendix XI.

9B.12 Paragraphs 9B.8 to 9B.11 do not apply to an aircraft if:

(a) the aircraft owner, operator or pilot has written authorisation from CASA, based on a safety case, for the operation of the aircraft without the ADS-B transmitting equipment; or
(b) the equipment is unserviceable for a flight, and each of the following applies:
 (i) the flight takes place within 3 days of the discovery of the unserviceability;
 (ii) at least 1 of the following applies for the flight:
 (A) flight with unserviceable equipment has been approved by CASA, in writing, subject to such conditions as CASA specifies;
 (B) the unserviceability is a permissible unserviceability set out in the minimum equipment list for the aircraft and any applicable conditions under subregulation 37 (2) of CAR 1988 have been complied with;
 (iii) ATC clears the flight before it commences despite the unserviceability.
Part A
Approved equipment configuration

1 An equipment configuration is approved if it complies with the standards specified in Part B or Part C of this Appendix.

Part B

ADS-B transmitting equipment — standard for approval

2 ADS-B transmitting equipment must be of a type that:
(a) is authorised:
 (i) in accordance with (E)TSO-C166(), or a later version as in force from time to time; or
 (ii) by CASA, in writing, in accordance with:
 (A) ATSO-C1004a, or a later version as in force from time to time; or
 (B) ATSO-C1005a, or a later version as in force from time to time;
(b) meets the following requirements:
 (i) the type must be accepted by CASA as meeting the specifications in RTCA/DO-260 dated 13 September 2000, or a later version as in force from time to time; and
 (ii) the type must utilise HPL at all times HPL is available; or
(c) is otherwise authorised, in writing, by CASA for the purposes of subsection 9B of this Civil Aviation Order as being equivalent to one of the foregoing types.

GNSS position source equipment — standard for aircraft manufactured on or after 8 December 2016

3 For an aircraft manufactured on or after 8 December 2016, the geographical position transmitted by the ADS-B transmitting equipment must be determined by:
(a) a GNSS receiver of a type that is authorised in accordance with (E)TSO-C145a or (E)TSO-C146a, or a later version as in force from time to time; or
(b) a GNSS receiver of a type that is authorised in accordance with (E)TSO-C196a, or a later version as in force from time to time; or
(c) a GNSS receiver or system which meets the following requirements:
 (i) is certified by an NAA for use in flight under the I.F.R.;
 (ii) has included in its specification and operation the following:
 (A) FDE, computed in accordance with the definition at paragraph 1.7.3 of RTCA/DO-229D;
 (B) the output function HPL, computed in accordance with the definition at paragraph 1.7.2 of RTCA/DO-229D;
 (C) functionality that, for the purpose of HPL computation, accounts for the absence of the SA of the GPS in accordance with paragraph 1.8.1.1 of RTCA/DO-229D; or
 (d) another equivalent system authorised in writing by CASA.

Note The following GNSS receivers meet the requirements of clause 3, namely, those certified to (E)TSO-C145a or (E)TSO-C146a, or later versions, or those manufactured to comply with (E)TSO-C196a.

GNSS position source equipment — standard for aircraft manufactured before 8 December 2016

4 For an aircraft manufactured before 8 December 2016, the geographical position transmitted by the ADS-B transmitting equipment must be determined by:
(a) a GNSS receiver or system that complies with the requirements of clause 3, other than sub-subparagraph 3 (c) (ii) (C) which is optional; or
(b) an equivalent GNSS receiver or system that has been approved in writing by CASA.

Note The following GNSS receivers meet the requirements of clause 4, namely, those certified to (E)TSO-C145a or (E)TSO-C146a, or later versions, or those manufactured to comply with (E)TSO-C196a. Some later versions of GNSS receivers certified to (E)TSO-C129 may also meet the requirements, i.e. those having FDE and HPL features incorporated.

Altitude source equipment — standard

5 The pressure altitude transmitted by the ADS-B transmitting equipment must be determined by:
(a) a barometric encoder of a type that is authorised in accordance with (E)TSO-C88a, or a later version as in force from time to time; or
(b) another equivalent system authorised in writing by CASA.

Aircraft address — standard

6 Unless otherwise approved, in writing, by CASA, the ADS-B transmitting equipment must:
(a) transmit the current aircraft address; and
(b) allow the pilot to activate and deactivate transmission during flight.

Note The requirement in paragraph 6 (b) is met if the ADS-B transmitting equipment has a cockpit control that enables the pilot to turn the ADS-B transmissions on and off.
Part C

For an aircraft manufactured on or after 8 December 2016, an equipment configuration is approved if:

(a) it has been certified by EASA as meeting the standards of EASA AMC 20-24; and
(b) the aircraft flight manual attests to the certification; and
(c) the GNSS receiver or system complies with the requirements of clause 3 in Part B.

Alternative approved equipment configuration — standard for aircraft manufactured before 8 December 2016

For an aircraft manufactured before 8 December 2016, an equipment configuration is approved if:

(a) it has been certified by EASA as meeting the standards of EASA AMC 20-24; and
(b) the aircraft flight manual attests to the certification; and
(c) the GNSS receiver or system complies with the requirements of clause 4 in Part B.
ADS-B Reported Quality

Philosophy: The user decides if the data is good enough to use for the application!