GBAS implementation status: international context and situation in France

Prepared by Pierre Ladoux – DSNA/DTI/CNS/NAV
Table of content

- GBAS international context
- Overview of GBAS activities in France
- DSNA activities in GBAS SESAR projects
- DSNA views with respect to GBAS CATII/III technical aspects
- GBAS internal study for Paris CDG airport
- Next steps
- Summary
International context:
- GBAS CAT-I implementation
- GBAS CAT-II/III development
GBAS CAT-I situation: ground equipment implementation

- ICAO GBAS CAT-I SARPs published in 2001
- Honeywell SmartPath GBAS station certified (System Design Approval) by the FAA in 2009
- First worldwide GBAS CAT-I operational approval at Bremen airport (Germany) in 2012
- GBAS CAT-I is now operational at several airports
 - Frankfurt, Zurich, Malaga, Newark, Houston, Sydney notably
- About 90 GBAS CAT-I installations in Russia (GPS+GLONASS)
- Planned GBAS CAT-I implementation in
 - Melbourne, Brisbane, Oslo, Tokyo Haneda
- Other envisaged locations but overall GBAS CAT-I deployment remains limited
GBAS CAT-I situation: A/C implementation

- First-ever certified GPS Landing System receiver in 2006 (Rockwell Collins MMR GLU-925)

- GLS CAT-I function on Airbus A/C
 - Certified on A380, A320, A330, A350
 - Certification on A320 NEO on-going
 - Remains an option on all A/C types
 - As of today, more than 400 aircraft have the GLS option selected

- GLS CAT-I function on Boeing A/C
 - Certified on B787, B737-800, B747-8
 - Certification planned on B777X in 2020, B777 retrofit later
 - GLS CAT-I is basic on B787, B747-8, option on B737NG/ B737MAX
 - As of today, more than 1500 aircraft have been delivered with the GLS option (47% with GLS function activated)
GBAS CAT-II/III situation: SC-SF solution (1)

- ICAO GBAS SARPs to support CAT-III operations nearly completion
 - Solution based on Single-Constellation Single-Frequency technology (GPS L1 only)
 - Concept called GAST-D
 - Under validation since 2010 with strong involvement of US, EU (SESAR) and Japanese stakeholders
 - Should be approved by ICAO NSP at NSP3 meeting in December 2016
 - Publication in Annex 10 in 2018

- GBAS FAST-D Ground Station development has already started
 - System Design Approval (SDA) for Honeywell Ground Equipment is announced for 2019 by the FAA

- EUROCAE ED-114B “MOPS for the GBAS ground subsystem to support precision approach and landing” in the context of GBAS CATI/II/III L1
 - Planned for Q2 2018
GBAS CAT-II/III situation: SC-SF solution (2)

- GBAS GAST-D Avionics
 - RTCA DO-253D GBAS airborne MOPS under finalization (FRAC should start in Spring 2017)
 - Should lead to new or amended GBAS airborne equipment TSO/ETSO

- GLS CATII/III implementation by airframer will depend on market demand, maturity of standards/regulatory requirements, availability of infrastructure and other business factors
GBAS CAT-II/III situation: MC-MF solution

- GBAS Multi-Constellation/Multi-Frequency ICAO SARPs development should start in 2017
 - Solution called GAST-F
 - Should provide better robustness with respect to ionosphere anomalies and RFI thanks to the use of a second ARNS frequency
 - Overall availability performance expected to improve thanks to a better geometry (additional satellites)
 - Significant contribution should come from the work conducted in Europe (SESAR)
 - GAST-F based on GPS L1/L5+GALILEO E1/E5a
 - Inputs also expected from similar study in Japan
Overview of GBAS activities in France
Overview of GBAS activities in France

- DSNA the French ANSP has been involved in GBAS standards and system development for more than 20 years
 - First experience of a Local Area Differential GPS (LADGPS) experimental station at Toulouse airport in 1994
 - Key contribution to standardization activities related to GBAS CAT-I and CAT-III (ICAO, EUROCAE WG-28)
 - Strongly involved in the CAT-I technical and operational validation phase using a GBAS station operating at Toulouse Blagnac
 - Key partner in SESAR 15.3.6 and 15.3.7 projects related to GBAS CAT-III

- GBAS CAT-I station only implemented at Toulouse Blagnac Airport
 - No further CAT-I deployment in France is foreseen at the moment
 - GBAS use in Toulouse is in principle restricted to Airbus but possible for flight trials

- GBAS CAT-III (GAST-D) prototype also installed

- On-going internal study to assess the operational benefits that a GBAS CAT-III system could bring to Paris CDG airport
SESAR GBAS activities conducted by DSNA
Validation of GBAS CAT-III solution based on GPS L1 only (GAST-D)

DSNA contributions on operational and technical tasks:
- Strong participation to the GAST-D ConOps and Safety Assessment Report development
- Participation to system architecture, requirements definition, system verification plan development,…

Implementation of a THALES GAST-D GS prototype at Toulouse airport:
- Verification activities to support GAST-D ICAO SARPs validation
- Toulouse GAST-D platform used by Airbus and Honeywell to perform interoperability and performance validation flight trials
- Prototype now running in Phase 3 (full GAST-D capability)

Project now under completion:
- Closure gate in November 2016
GBAS site at Toulouse Blagnac

2 parallel runways

GBAS site
GAST-D Prototype at Toulouse/Blagnac
Definition and verification of GBAS CAT-III MC/MF concept (GAST-F)

Main contributions on technical aspects:
- Leader through ENAC (French Civil Aviation school) of the preliminary research studies
- Participation to system architecture and definition, system verification plan development,…

Implementation of a GBAS MC/MF GS mock-up at Toulouse airport:
- Real-time broadcast of GPS L1/L5 and GALILEO E1/E5a differential corrections
- Used in May 2016 to perform GBAS MC/MF interoperability flight trials with Honeywell Airborne mock-up installed on Falcon F900EX A/C

Project now under completion:
- Closure gate in November 2016

Work on GBAS MC/MF to be continued in SESAR 2020
- Should start end of 2016
DSNA views with respect to GBAS CATII/III technical aspects
DSNA views on GBAS CATII/III

- **GBAS CAT-III solution based on GPS L1 only (GAST-D)**
 - Concerns about robustness against ionosphere events, RFI and siting constraints
 - Degraded availability performance in areas where strong ionosphere activities occur (low-latitude and high-latitude regions)
 - L1 frequency jamming (PPDs, Repeaters) may cause interruption of GBAS CAT-III service
 - Ground Ionosphere Gradient Monitor may impose siting restrictions
 - Seen as a short-term, mid-term solution that could work during an ILS/GBAS transition phase (ILS remain as back-up)

- **GBAS CAT-III MC/MF solution (GAST-F)**
 - Built on the use of the GALILEO constellation
 - Should constitute a more robust solution and improve siting flexibility
 - Availability performance improved and expected to be suitable to start ILS decommissioning
 - Seen as a mid, long-term solution
GBAS internal study for Paris CDG
GBAS study for Paris CDG (1)

- Very good candidate airport for GBAS operations
 - 4 parallel runways
 - 8 CAT-III ILS!
 - GBAS ground station at CDG may also support GBAS operations at Paris Le Bourget (Business Aviation airport)
GBAS study for Paris CDG (2)

- Work made to assess the operational benefits that a GBAS CAT-III system could bring to Paris CDG airport
 - Study built on the GBAS SESAR operational and technical work
 - Analysis of necessary operational changes to allow GBAS operations under LVP conditions
 - Evaluation of the applicability of the “Optimized Operations in LVP conditions” concept to this airport and estimation of the potential gain in terms of runway throughput
 - Assessment of the capability of GBAS to support simultaneous triple parallel approach operations (Paris CDG RWYs 27R, 26L with Paris Le Bourget RWY 27)
 - Also assessment of the possibility of a GBAS station installed at CDG to support offset approach (with vertical guidance) at Le Bourget RWY 25
GBAS study for Paris CDG (3)

- Simultaneous triple parallel approach operations (Paris CDG RWYs 27R, 26L and Paris Le Bourget RWY 27)
GBAS study for Paris CDG (4)

Preliminary outcomes

- Dedicated GBAS runway to concentrate GBAS equipped A/C not possible
 - Crossing traffic flows coming from North and from South not permitted
- “Optimized Operations in LVP” concept not applicable with the existing ATC tools
 - GBAS capability not visible in French Flight plan system at the moment
 - Managing a different spacing for GBAS-ILS and GBAS-GBAS arrivals considered as too complex by ATCOs without the provision of adequate tools
- Concept can only be envisaged if ATC radar display indicates the GBAS CAT-III A/C capability and provides a spacing management tool

- On-going installation of wide-aperture ILS localizers reducing the size of the critical/sensitive areas should allow to increase the runway throughput under LVP without the need to necessarily implement a new technology like GBAS
- However, it could be worth to implement a GBAS CAT-I station to gain operational experience and pave the way for potential future CAT-III operations
Next steps
Next steps

- GBAS Toulouse CAT-I signal to sustain for Airbus needs
- GBAS CAT-III Paris CDG study finalization and decision making
- SESAR 15.03.06 and 15.03.07 work completion (Autumn 2016)
- GBAS CAT-III work will continue in SESAR 2020 (fall 2016)
Summary
Summary

- GBAS CAT-I station only implemented at Toulouse Blagnac Airport
- GBAS CAT-III activities on-going
 - SESAR 1 work under completion: GAST-D and GAST-F solutions
 - Paris CDG internal study under finalization
- GBAS CAT-III work to be continued in SESAR 2020
Thanks for your attention!