Updates to FAA Advisory Circular 150/5320-6

Presented to: XIII ALACPA Seminar on Airport Pavements
Panama City
By: David R. Brill, P.E., Ph.D.
Date: 1 December 2016
Federal Aviation Administration
Airport Technology R&D Program

• Research conducted at the FAA William J. Hughes Technical Center, Atlantic City, NJ, USA.

• Sponsor: FAA Office of Airport Safety and Standards (AAS100), Washington, DC.

• Provide support for development of FAA pavement standards (Advisory Circulars).
FAA Airport Pavement R&D

National Airport Pavement Test Facility (NAPTF)

Fully enclosed facility for accelerated traffic testing of airport pavements – opened 1999

National Airport Pavement Materials Research Center (NAPMRC)

Opened August 27, 2015

Heavy Vehicle Simulator for Airports (HVS-A)
AC 150/5320-6F
Airport Pavement Design and Evaluation

• Issued Nov. 10, 2016.
 – Replaces AC 150/5320-6E.
 – Incorporates FAARFIELD 1.41 software program.

• General reorganization of contents.

• Download at: https://www.faa.gov/airports/resources/recent_advisory_circulars/
AC 150/5320-6F – Partial List of Changes - General

- Eliminated separate chapter for light-load design (intended to handle aircraft under 13,600 kg / 30,000 lbs. gross weight).
- Consolidated list of minimum thicknesses applicable for various standard layer types.
- New guidance for automated compaction criteria – replaces Table 3-4 in old AC.
- Revised shoulder design criteria.
- Updated all design examples.
- Added appendix on NDT methods for pavement evaluation.
AC 150/5320-6F – Partial List of Changes - Flexible

- Clarified subgrade characterization using CBR.
- Implemented new asphalt fatigue criteria (RDEC energy model).
- Reduced minimum base thickness requirements.
 - Removed previous requirement for additional stabilized base thickness (above 125 mm / 5 inches) when P-209 subbase is used.
AC 150/5320-6F –
Partial List of Changes - Rigid

- Modified conversion from CBR to k-value.
- Modified guidance for concrete design strength.
- Added detail on reinforcement at Type A1 joints (reinforced isolation joint).
- Added detail of transition between PCC and HMA Pavement sections.
- Removed CRCP design procedure (rarely used).
- Reduced subgrade compaction requirements for rigid pavements.
AC 150/5320-6F Organization

- Chapter 1: Airport Pavement Function and Purpose
 - Pavement layers & specifications
 - Cost effectiveness analysis
- Chapter 2: Soil Investigations
 - Soil strength testing
 - Subgrade stabilization
- Chapter 3: Pavement Design
 - Flexible Pavement Design
 - Rigid Pavement Design
- Chapter 4: Pavement Rehabilitation *(includes overlay design)*
- Chapter 5: Pavement Structural Evaluation
- Chapter 6: Pavement Design for Shoulders
- Appendix A: Soil Characteristics *(USC Classification)*
- Appendix B: Design of Structures
- Appendix C: NDT Using Falling-Weight Type Devices
- Appendix D: Reinforced Isolation Joint
- Appendix E: Variable Section Runway
- Appendix F: Related Reading Material
Chapter 3 – Pavement Design

1. Design Considerations
2. FAA Pavement Design
3. Flexible Pavements
4. Full Depth Asphalt Pavements
5. Rigid Pavements
6. Stabilized Base Course
7. Base/Subbase Contamination
8. Drainage Layer
9. Subgrade Compaction
10. Swelling Soils
11. Pavement Life
12. Pavement Design Using FAARFIELD
13. Flexible Pavement Design
14. Rigid Pavement Design
15. Pre-stressed, Precast, Reinforced & CRCP
16. Aggregate-Turf Pavements
17. Heliport Design
18. Passenger Loading Bridge

NOTE: No more separate chapter for light load aircraft design.
Layer Types & Allowable Modulus Values

- Similar to FAARFIELD v 1.305.
- “Undefined” layer replaced by “User-defined.”
- P-306 econocrete renamed Lean Concrete.
- Added P-219, recycled concrete aggregate, as a standard layer type.
- Rubblized concrete base now handled as user-defined layer.

Table 3-2. Allowable Modulus Values and Poisson’s Ratios Used in FAARFIELD

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>FAA Specified Layer</th>
<th>Rigid Pavement psi (MPa)</th>
<th>Flexible Pavement psi (MPa)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>P-501 PCC</td>
<td>4,000,000 (50,000)</td>
<td>NA</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>P-401/P-403/P-601 HMA</td>
<td>NA</td>
<td>200,000 (1,380)¹</td>
<td>0.35</td>
</tr>
<tr>
<td>Stabilized Base and Subbase</td>
<td>P-401/P-403HMA</td>
<td>400,000 (3,000)</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-306 Lean Concrete</td>
<td>700,000 (5,000)</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-304 cement treated base</td>
<td>500,000 (3,500)</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-301 soil cement</td>
<td>250,000 (1,700)</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variable stabilized rigid</td>
<td>250,000 to 700,000 (1,700 to 5,000)</td>
<td>NA</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Variable stabilized flexible</td>
<td>NA</td>
<td>150,000 to 400,000 (1,000 to 3,000)</td>
<td>0.35</td>
</tr>
<tr>
<td>Granular Base and Subbase</td>
<td>P-209 crushed aggregate</td>
<td>Program Defined</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-208 aggregate</td>
<td>Program Defined</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-219. Recycled concrete aggregate</td>
<td>Program Defined</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-211. Lime rock</td>
<td>Program Defined</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-154 uncrushed aggregate</td>
<td>Program Defined</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Subgrade</td>
<td>Subgrade</td>
<td>1,000 to 50,000 (7 to 350)</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>User-defined</td>
<td>User-defined layer</td>
<td>1,000 to 4,000,000 (7 to 350)</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. A fixed modulus value for hot mix surfacing is set in the program at 200,000 psi (1380 MPa). This modulus value was conservatively chosen and corresponds to a pavement temperature of approximately 90°F (32°C).
Minimum Layer Thickness - Flexible

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>FAA Specification Item</th>
<th>Maximum Airplane Gross Weight Operating on Pavement, lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><12,500 (5 670)</td>
</tr>
<tr>
<td>HMA Surface<sup>1</sup>, <sup>2</sup>, <sup>3</sup></td>
<td>P-401, Hot Mix Asphalt (HMA) Pavements</td>
<td>3 in. (75 mm)</td>
</tr>
<tr>
<td>Stabilized Base</td>
<td>P-401 or P-403; P-304; P-306<sup>4</sup></td>
<td>Not Required</td>
</tr>
<tr>
<td>Crushed Aggregate Base<sup>5</sup>, <sup>6</sup></td>
<td>P-209, Crushed Aggregate Base Course</td>
<td>3 in. (75 mm)</td>
</tr>
<tr>
<td>Aggregate Base<sup>5</sup>, <sup>7</sup>, <sup>8</sup></td>
<td>P-208, Aggregate Base Course</td>
<td>3 in. (75 mm)</td>
</tr>
<tr>
<td>Subbase<sup>5</sup>, <sup>8</sup></td>
<td>P-154, Subbase Course</td>
<td>4 in. (100 mm)</td>
</tr>
</tbody>
</table>
Minimum Layer Thickness - Rigid

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>FAA Specification Item</th>
<th>Maximum Airplane Gross Weight Operating on Pavement, Lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><12,500 (5,670)</td>
</tr>
<tr>
<td>PCC Surface</td>
<td>P-501, Portland Cement Concrete (PCC) Pavements</td>
<td>5 in. (125 mm)</td>
</tr>
<tr>
<td>Stabilized Base</td>
<td>P-401 or P-403; P-304; P-306</td>
<td>Not Required</td>
</tr>
<tr>
<td>Base</td>
<td>P-208, P-209, P-211, P-301</td>
<td>Not Required</td>
</tr>
<tr>
<td>Subbase(^3,4)</td>
<td>P-154, Subbase Course</td>
<td>4 in. (100 mm)</td>
</tr>
</tbody>
</table>
FAARFIELD 1.41

- Accompanies new AC 150/5320-6F.
- Many significant changes.
- Reduces excess design conservatism.
- New design-based compaction procedure.
- Incorporates results of full-scale tests at the National Airport Pavement Test Facility.
- Download:
 http://www.airporttech.tc.faa.gov/Download/Airport-Pavement-Software-Program
FAARFIELD – What Is It?

- Federal Aviation Administration
- Rigid and Flexible
- Iterative
- Elastic
- Layered
- Design

- FAARFIELD is the standard FAA airport pavement thickness design program.
- FAARFIELD design procedure for:
 - Flexible
 - Rigid
 - Overlay
- Current version is FAARFIELD 1.41 (posted 10 Nov 2016)
FAARFIELD – Technical Background

- Computer program for Windows operating systems.
- Main program drives three subprograms:
 - LEAF (layered elastic analysis).
 - NIKE3D (3D finite element analysis).
 - FAAMesh (3D mesh generation).
- NIKE3D information:
 - Modified for FAARFIELD by the FAA.
 - Distributed in compiled form under a software sharing agreement with Lawrence Livermore National Laboratory (LLNL).
Structural Models in FAARFIELD

- Both layered elastic (LEAF) and 3D-FEM (NIKE3D) are used in FAARFIELD.

- **Flexible pavement design**
 - LEAF is used for all structural computations.
 - For flexible, no advantage to using 3D-FEM.

- **Rigid pavement design**
 - LEAF is used to generate a preliminary thickness.
 - Final iterations are done using a 3D finite element model (3D-FEM).
Cumulative Damage Factor (CDF)

- Sums the damage contributed from each aircraft - not from equivalent aircraft.
- \(\text{CDF} = \sum \left(\frac{n_i}{N_i} \right) \), where:
 - \(n_i \) = actual passes of individual aircraft \(i \)
 - \(N_i \) = allowable passes of individual aircraft \(i \)
- When \(\text{CDF} = 1 \), design life is exhausted.
- In FAARFIELD:
 - The gear location and wander are considered separately for each aircraft in the total mix.
 - CDF is calculated for each 25.4 cm (10 inch) wide strip over a total 20.83 m (820 inch) width.
 - Miner’s rule to sum damage for each strip.

Must input the fleet mix, NOT equivalent departures of design aircraft.
Cumulative Damage Factor (CDF)

Difference in Gear Location

Damage from Airplane A

Damage from Airplane B

25.4 cm (10 in.)
Cumulative Damage Factor (CDF)

- Damage from Airplane A
- Damage from Airplane B
- Total Damage

25.4 cm (10 in.)
Large Airplane Traffic Mix Gear Locations
FAARFIELD – CDF Graphical Display
Remember - in FAARFIELD

Use the entire traffic mix!
General Improvements:

• Updated aircraft library aligned with COMFAA 3.0.
• Added non-aircraft vehicles (trucks) to library.
• Automatically generates PDF design report.
• Automated, software-based compaction criteria.
• Support for user-defined gear configurations.
• All data files now stored in document directories.
• Minimum thickness in convenient metric units (100 mm; 125 mm)
• Updated Help file with new examples.
Aircraft Libraries

• Aligned the aircraft libraries in COMFAA and FAARFIELD to the extent possible.
• Used the most current data from manufacturers.
• Includes new aircraft:
 – A350-900/1000
 – B747-8
 – B787-9
 – Embraer Fleet
Automated Compaction Criteria

Computes compaction control points for rigid & flexible pavements.

Subgrade Compaction Requirements

Non-Cohesive Soil

<table>
<thead>
<tr>
<th>Percent Maximum Dry Density (%)</th>
<th>Depth of compaction from pavement surface (in)</th>
<th>Depth of compaction from top of subgrade (in)</th>
<th>Critical Airplane for Compaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0 - 16</td>
<td>--</td>
<td>B777-200 ER</td>
</tr>
<tr>
<td>95</td>
<td>16 - 70</td>
<td>0 - 43</td>
<td>B777-200 ER</td>
</tr>
<tr>
<td>90</td>
<td>70 - 183</td>
<td>43 - 156</td>
<td>B747-200B Combi Mixed</td>
</tr>
</tbody>
</table>

Cohesive Soil

<table>
<thead>
<tr>
<th>Percent Maximum Dry Density (%)</th>
<th>Depth of compaction from pavement surface (in)</th>
<th>Depth of compaction from top of subgrade (in)</th>
<th>Critical Airplane for Compaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>0 - 16</td>
<td>--</td>
<td>B777-200 ER</td>
</tr>
<tr>
<td>90</td>
<td>16 - 28</td>
<td>0 - 1</td>
<td>B777-200 ER</td>
</tr>
<tr>
<td>85</td>
<td>28 - 96</td>
<td>1 - 69</td>
<td>B747-200B Combi Mixed</td>
</tr>
<tr>
<td>80</td>
<td>96 - 178</td>
<td>69 - 151</td>
<td>B747-200B Combi Mixed</td>
</tr>
</tbody>
</table>
Changes in Data File Storage

• All data files are now stored in document directories by default.
 – Job files
 – External aircraft library files
 – Output files.
 – C:\Users\[User Name]\Documents\FAARFIELD

• Previously, data files (including job files) were stored in the program directory.
 – Required unrestricted read/write access for user.
 – Risk of data loss when changing/upgrading PC.
Flexible Designs:

- Revised flexible failure model now includes direct evaluation of tandem gear damage.
- Advanced, energy-based asphalt fatigue models. Fatigue damage (HMA CDF) is now computed at the bottom of all asphalt layers.
- Reduced excess stabilized base thickness requirement.
- Automatic base layer thickness design feature extended to all standard flexible pavement designs.
- Improved sublayering of aggregate layers.
Flexible Pavements

• New thickness designs are generally less conservative than FAARFIELD 1.305 designs for the same inputs.

• More compatible with COMFAA 1.3 (ACN-PCN method).

Conventional Flexible Pavement Comparison

Stabilized Flexible Pavement Comparison
New Aggregate Modulus Model

- **FAARFIELD 1.4** implements a new sublayering and modulus computation procedure for aggregate subbase (P-154 & P-209).

- **Why?**
 - Previous procedure (WES Modulus subroutine) has gaps that can cause illogical results under some circumstances.
 - New model provides a continuous function of modulus with changes in P-154 thickness.
 - Better overall agreement with the P-209/P-154 equivalency factor used in PCN computations.
Flexible Base Thickness

• The minimum stabilized base thickness is still 5 in.
• No additional stabilized base thickness requirement when improved subbase material (P-209) is used.
• Additional thickness requirement applies only if standard subbase (P-154) is used.
Old method was a two-part P/C ratio consisting of a wander-related factor multiplied by a tandem factor.

New method: Compute CDF for multiple wheels in tandem by numerical integration of the longitudinal strain profile.

Similar to method used in Alizé-LCPC (DGAC-France).

New P/C ratio relates only to wander.
Rigid Designs:

• Completely revised rigid failure model based on newest full-scale test data.

• Design stress is the larger of interior stress or 3D finite element computed edge stress (reduced by 25% for assumed load transfer).

• Completely rewritten concrete overlay design procedure.

• Improved, more accurate 3D finite element model.

• New Visual Basic.NET mesh generation procedure replaces legacy Fortran code.
Rigid Pavements

• New thickness designs are generally less conservative than FAARFIELD 1.305 designs for the same inputs.

• New calibrations incorporate CC6 failure data.

Effect of Subgrade Modulus E

Rigid Design Example
Improved Rigid Failure Model

• Sensitivity to factors such as concrete strength, traffic level and subgrade support is similar to current version.

Effect of Concrete Flex Strength

Effect of Traffic

1 December 2016
Improved 3D Finite Element Mesh

- More accurate stress results.
- Improved infinite foundation model.
- Still one slab model with assumed 25% load transfer.

FAARFIELD 1.305

FAARFIELD 1.41
Rigid Overlay Design Procedure

- Completely rewrote overlay life program module.
- Eliminated gaps and illogical results, especially for overlays on new or undamaged PCC.

FAARFIELD 1.305

FAARFIELD 1.41
FAARFIELD 1.4
System/Software Requirements

Minimum
• Windows XP or higher
• 2 GHz processor
• 2 GB RAM
• 200 MB of available space on hard drive.

Recommended
• Windows 7 or higher
• 3 GHz processor
• 4 GB RAM
• 64-bit operating system*

Notes:
*FAARFIELD 1.4 supports 32-bit or 64-bit Windows operating systems.
Running FAARFIELD: Program Windows and Linkage

- NOTES
 - Additional Section Information and Detailed Output Data
- STARTUP
 - Control and Organization
- OPTIONS
 - Set User Options and Tolerances
- STRUCTURE
 - Structure Data Input and Design
- AIRCRAFT
 - Aircraft Load and Traffic Data Input
- AIRCRAFT DATA
 - View Landing Gear Geometry, Load, and Tire Pressure

Export XML
Structure Window

- For each structural layer:
 - Material type (FAA specification)
 - Layer Thickness
 - Modulus or R-value (if applicable)
- There are built-in restrictions on the layer types, including relative position and layer properties.
- For subgrade, can enter CBR or k and FAARFIELD will convert to E.

Aircraft Window

- Select airplane from library.
- For each airplane in the mix:
 - Aircraft Name
 - Gross Taxi Weight
 - Annual departures and percent annual growth if applicable
- Enter data for all airplanes in the mix.
FAARFIELD External Airplane Library

- FAARFIELD includes >190 airplanes in the internal library.
- FAARFIELD allows users to define additional airplanes in the external library.
- Add or modify external library airplanes by editing the file: FAAairplaneLibrary.xml
- XML (Extensible Markup Language) format.
- Edit the file using Microsoft Word or other XML editor.
Example Airplane Info in XML File

- `<AirplaneInfo>`
 - `<Name>B777-300ER Example</Name>`
 - `<GrossWt>777000</GrossWt>`
 - `<MGpcnt>0.475</MGpcnt>`
 - `<CP>221</CP>`
 - `<Gear>N</Gear>`
 - `<IGear>3</IGear>`
 - `<TT>55.00</TT>`
 - `<TS>404.50</TS>`
 - `<TG>0.00</TG>`
 - `<CP>57.60</CP>`
 - `<NTires>6</NTires>`
 - `<Wheel_Coordinates>`
 - `<TX>-27.50</TX>`
 - `<TY>-57.60</TY>`
 - `<TX>-27.50</TX>`
 - `<TY>-57.60</TY>`
 - `<TX>-27.50</TX>`
 - `<TY>-57.60</TY>`
 - `<TX>-27.50</TX>`
 - `<TY>-57.60</TY>`
 - `<NEVPTS>6</NEVPTS>`
 - `<Evaluation_Points>`
 - `<EVPTX>27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
 - `<EVPTX>-27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
 - `<EVPTX>-27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
 - `<EVPTX>-27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
 - `<NTires>`
 - `<TX>`
 - `<TY>`
 - `<TX>`
 - `<TY>`
 - `<TX>`
 - `<TY>`
 - `<TX>`
 - `<TY>`
 - `<NEVPTS>`
 - `<Evaluation_Points>`
 - `<EVPTX>`
 - `<EVPTY>`
 - `<EVPTX>`
 - `<EVPTY>`
 - `<EVPTX>`
 - `<EVPTY>`
 - `<EVPTX>`
 - `<EVPTY>`
 - `<NTires>`
 - `<NEVPTS>`
- `<Evaluation_Points>`
 - `<EVPTX>27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
 - `<EVPTX>-27.5</EVPTX>`
 - `<EVPTY>-27.5</EVPTY>`
- `<NTires>`
- `<NEVPTS>`

- GrossWt = weight of airplane, lbs.
- MGpcnt = % of GrossWt on 1 main gear
- CP = tire contact pressure, psi
- Gear = gear designation letter code
- IGear = gear ID no. (see next slide)
- TT, TS, TG, B = gear parameters (see Help File)
- NTires = no. of tires in 1 gear
 - TX, TY: Enter 1 pair of coordinates for each tire (1 through NTires), in.
- NEVPTS = no. of evaluation points for LEAF
 - EVPTX, EVPTY: Enter 1 pair of x,y coordinates for each evaluation point (1 through NEVPTS), in.
- Note: You have to enter the data in U.S. units (inches, psi).
Codes for Various Gear Types

<table>
<thead>
<tr>
<th>Gear Type</th>
<th>Example</th>
<th>Code</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>DC3</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>B737</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>2D</td>
<td>B767</td>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>3D</td>
<td>B777</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>User-Defined*</td>
<td>A380 (20 wheels)</td>
<td>X</td>
<td>13</td>
</tr>
</tbody>
</table>

*See help file for information on user-defined gear geometries.
User-Defined Gear Geometries

• A new feature allows users to specify arbitrary gear geometries in the external library.
 – Coded as “X” in the external library.
 – Allows multiple wheel groups to be defined.

• Uses rewritten internal pass/coverage computation routine.

• New user guidance for the external library – see FAARFIELD Help File.

In this example, the externally defined A380 main gear gives the identical result as the internally stored airplane.
Further Improvements

• Modernize the FAARFIELD graphical user interface (GUI).
 – Job and section entry.
 – Improved start-up screen.
 – Improved screen re-sizing and appearance.
 – Improved flow between screens.

• Rationalize data file structure.
Thank You! ¡Gracias!

http://www.airporttech.tc.faa.gov/
david.brill@faa.gov

Acknowledgments:

FAA Airport Technology R&D Branch:
Dr. Michel Hovan, Branch Manager;
Jeff Gagnon, Airport Pavement Section Manager;
Dr. Navneet Garg; Al Larkin; Murphy Flynn; Ryan Rutter; Quinn Jia, Wilfredo Villafane

FAA Airport Engineering Division:
Doug Johnson; Greg Cline

SRA International:
Michael Collins; Dr. Izydor Kawa; Dr. Qiang Wang; Dr. Yuanguo Chen; Dr. Kairat Tuleubekov; Shawn Hershman; Jeff Stein

Gemini:
Dr. Hao Yin