Modern surveillance system.
Punctual and space distributed system

ADS-B and MLAT modern view & evolution
VNIIRA-OVD & NPP CRTS - leadership in modern surveillance technologies in Russia:

- First ADS-B 1090 ES GS “Onyx” (2007)
- First Mode-S MSSR “Aurora-S” (2011) and “Aurora-2” (2013)
- First WAM “Mera” (2014)
- First ADS-B vehicle transponder “Gnome” (2015)
Experience in installations

Wide experience in secondary surveillance and ADS-B systems:

- MSSR “MVRL-SVK” (44 pcs)
- MSSR “Aurora” (~30 pcs)
- ADS-B GS “NS-1”, “NS-1A”, ... (~45 pcs)
- MSSR “Aurora-S”/”Aurora-2” (~5 pcs in installation)
- WAM/MLAT “Mera” (2 pcs)
Key products for surveillance

- Mode S MSSR “Aurora-2” (2013)
 - RBS, Mode-S (EHS), UVD (Russian), ADS-B 1090 ES
 - Range up to 465 km, rotation period from 4 sec
 - 3’ azimuth/15 m range precision
- ADS-B GS “Sota-X1”/”Sota-X4” (2015)
 - Full ED-129/DO-260B compliance
 - Outdoor (Sota-X1) installation, 20W consumption
- ADS-B Vehicle Transponder “Gnome” (2015)
 - DO-260B compliance
- ADS-B Server (2015)
 - Up to 64 ADS-B sources, data mixing
 - ASTERIX 021/023/064/247, almost all versions
 - RBS, Mode-S (EHS), ADS-B 1090 ES
 - Passive and active (own interrogators) operation
 - Synchronization GPS, GLONASS, transponder-based
ADS-B ground stations modern view

- Single-channel and multichannel (sector antenna)
- Compact size, outdoor installation
 - Outdoor 4-channel ground station planned on 2016
- Full ED-129 and DO-260B compliance
- Multilateration support:
 - Decoding RBS and Mode-S replies
 - Precise time counter (OCXO)
 - Timestamps LTC and UTC
 - GPS/GLONASS synchronization, support operation without GNSS
 - Data source for several MLAT servers
- Remote control & management
- Choice of antennas

Radial A5-ADSB 5 dB, 0.5 m
AR5-1090 5 dB, 1 m
AS12-1060 12 dB, 1.6 m
AS13-1060 13 dB, 2 m
024 8 dB, 3 m
ADS-B and WAM in Europe

- Implementation of ADS-B and WAM in Europe coordinated by CASCADE program
- EU No 1207/2011, after 2015/2017:
 - All aircrafts IFR: ELS
 - Aircrafts from 5700 kg or 250 knots: EHS and ADS-B 1090 ES
- Preferred way is combination WAM/ADS-B
 - More 370 WAM/ADS-B sensors as of 2014
 - Expected about 700 in 2017

Main ADS-B development direction is combination of WAM and ADS-B
Deployment of new WAM/ADS-B systems allows to decrease 1090 MHz line workload

ICAO Eurocontrol report on surveillance and ACAS activities in Europe, IP ASP16-08 7.04.2014.
If ADS-B sensors are MLAT-capable, ADS-B network may be smoothly transformed into ADS-X and WAM system by adding new sensors.

- Stage 1: ADS-B network
- Stage 2: ADS-B with trajectory confirmation (ADS-X)
- Stage 3: WAM

- No clear understanding for ADS-X technical specifications
- But it provides definite advantages for ATC
Further trends for ADS-B ground stations

- Further reduction of:
 - Size
 - Power consumption
- Outdoor installations in any climate (from Arctic to tropical)
- Autonomous power supply ability
- Embedding to different radar systems

ADS-B receiver “Amber-2” (2016):

- Compact:
 - Size 115x126x49 mm, weight 2 kg
 - Power consumption 15 W
- Protected:
 - Dust- and waterproof IP68 stainless enclosure
 - Temperature from -50°C to +50°C
- Functional:
 - 2 independent channels (1-3 GHz tunable)
 - Operate as ADS-B ground station (ED-129, DO-260B) and/or MLAT sensor
 - GPS/GLONASS synchronization
MLAT systems modern view

- Dependent and independent synchronization
 - GPS and GLONASS in any combination
 - Transponder-based synchronization
 - Mix methods in a single system
- Sensors and interrogators sharing between systems
- Remote control & management
- Multifunction systems (next slide)

Multifunction MLAT systems

- Multifunction MLAT – emerging MLAT technology
 - Offered today by leading MLAT producers
- Different functions on the single system: WAM, Surface MLAT, ADS-B, HMU
- Key benefits:
 - Much cheaper than separate systems
 - New ATC applications in approach zone:
 - Precision approach monitoring (PAM)
 - Parallel runway approach
 - Reduced spacing on take-off
- Most effective use-cases:
 - Airport Surface+TMA MLAT with high precision in approach zone
 - HMU on the normal WAM

- New way for surveillance: implement different functions on a single system instead of separate systems
- Adding new functions result in improvement of other functions
Long-range MLAT

- **Wide-based MLAT** (sensors distributed >~100 NM)
 - Active or passive surveillance, high precision
 - GNSS only synchronization
 - Requires high-band data communication channels

- **Short-based MLAT** (all sensors in ~10 NM area)
 - Only active surveillance in far zone, precision degrades with distance (as for radar)
 - GNSS or independent synchronization
 - Local data channels (directed Wi-Fi, radio relay)
 - Range is usually limited by interrogation potential

- **Short-based “Mera”**: range up to 100/115 NM
- **“Almanac-2”** (planned for 2016): up to 200 NM
 - Full replacement for airdrome MSSR
 - All MLAT advantages: cheap, simple service, ...
 - Novel applications: seashore, regions with no infrastructure (desert, far north)
Vehicle transponders

- Make vehicles visible for surface guidance and control
 - Using ADS-B and/or MLAT
- Make vehicles visible for pilots
- Automate vehicles movement management

ADS-B 1090 ES vehicle transponder “Gnome” (2015)

- DO-260B compliant, transmit DF18
- Power consumption 1.5 W, transmitting power 18 W
- Temperature from -50°C to +65°C
- GLONASS/GPS
MLAT installation experience

Saint-Petersburg (Russia) WAM

- TMA WAM at Pulkovo airport, Saint-Petersburg, Russia
- First fragment deployed in 2014
 - 5 Rx and 1 Tx stations (30 NM base)
 - GPS, Glonass synchronization
- Operational area up to 120 NM range
 - ADS-B receive up to 250 NM
- Almost constant precision ~50 m (STD)
- Operational trial planned on 2016
MLAT installation experience

Varadero (Cuba) WAM+MLAT

- TMA WAM + Surface MLAT at Juan Gomez airport, Varadero, Cuba
- Deployed in 2014
 - 6 Rx and 2 Tx (4 NM base, 1 station at 12 NM)
- Operational area: surface & TMA zone up to 40 NM
 - ADS-B receive up to 200 NM
- Precision depends on range, average 100 m
- On operational trial since 2014
Remote control and management

- Remote control and management
 - Supported for all VNIIRA/CRTS surveillance systems: MSSR, ADS-B, MLAT
 - Remote control & monitoring, management & configuration, software & firmware update
 - Connection to external CMS (next slide)

- MLAT is particularly suitable for remote operation:
 - Simple hardware, no routine service
 - High degree of reliability due to separate hardware units, installed with redundancy
 - Redundancy +2 or +3 stations preferred
 - Repairs may be performed by schedule, no interrupt of service

- MLAT well suits for remote ATC:
 - Easy remote operation
 - Built-in surface surveillance
VNIIRA/CRTS “Superterminal” (2011) – solution for regional monitoring, archiving and management center

- Simultaneous access to multiple MSSR, ADS-B and MLAT systems
- Simple and extended monitoring
- Management and configuration
- Flight situation display
- Hardware status archives
- Configurable periodical reports

Deployed in the control center, Havana, Cuba (2011)

- 6 MSSR
- 1 WAM/MLAT
- In operational use
Conclusions

✓ Combined ADS-B+MLAT sensors is the most effective way of ADS-B development today
 ✓ Provides for smooth transition from independent to dependent surveillance
✓ Modern MLAT systems are:
 ✓ Multifunction
 ✓ Sensor/interrogator sharable
 ✓ Flexible configuration
✓ Remote control and management
 ✓ MLAT systems are well suitable for remote operation
 ✓ Surface&TMA MLAT is a good solution for remote ATC
Thank you for your attention

LLC «NPP «CRTS»
199106, 14-1, Shkipersky protok,
Saint-Petersburg, Russia
Phone: +7 (812) 2913794
Fax: +7 (812) 2913793
E-mail: info@npp-crts.ru
www.npp-crts.ru

VNIIRA-OVD JSC
199106, 19, Shkipersky protok, Saint-
Petersburg, Russia
Phone/Fax: +7 (812) 356-01-40
E-mail: office@vniiraovd.com
http://www.vniira-ovd.com