Satellite Based ADS-B

NAV CANADA

April 2014
Outline

- Aireon Global ADS-B via LEO satellites
- Why the initial focus on the North Atlantic?
- Benefits Assessment
- Work Underway and Moving Forward

Frequency Spectrum
Goal

To reduce aircraft separation minima through ADS-B (out) via global Low Earth Orbiting (LEO) satellites
Aireon ADS-B via Low Earth Orbiting (LEO) Satellites
Focus on North Atlantic Oceanic Airspace

- Organized Track Structure NAT OTS
- Eastbound Tracks take advantage of tail winds
- Westbound Tracks avoid head winds
- Procedural Airspace = large distances
- Changes to flight levels, routes, speed by exception
Gander/Shanwick Airspace Today

- **1,000** flights per day (1,300 peak summer day)
- **350,000** commercial flights per year
- **+23,000** military & GA flights per year
- **90%** of the flights are already ADS-B equipped
- **78%** of flights are Data Link (FANS 1/A) equipped
- **80%** are capable and use Controller Pilot Data Link Communications (CPDLC)
Aireon ADS-B System Benefits

Safety

- ADS-B provides near real time aircraft surveillance
- Improves situational awareness, conflict detection and reaction/resolution
- Aircraft would have more flexibility in emergency situations
- Provides surveillance source separate from the communications (CPDLC) network sources
- More complete and accurate reporting of aviation occurrences, allowing better management of safety risk and better support of the Safety Management System
Aireon ADS-B System Benefits

Environmental/Efficiency

• More efficient “domestic-like” flight trajectories in oceanic airspace
• More predictable airline cost planning
• Climb/Descend and vary speed to chase wind push and avoid headwinds
• Improve opposite direction and crossing traffic profiles
• Significant worldwide reductions in greenhouse gas (GHG) emissions
Aireon ADS-B System Benefits

Predictability/Reliability

- Access to ADS-B data could support traffic flow management-sequencing, merging and balancing for major cities in eastern North America and Western Europe
- Supports information sharing and collaborative process
- SWIM requires flight planning systems, dispatch, and airline gate-to-gate management to become more sophisticated and efficient. Surveillance via LEO satellite ADS-B will accommodate this.
Aireon ADS-B System Benefits

Supporting ASBU implementation

- B1-SWIM: Performance Improvement through the application of System-Wide Information Management (SWIM)
- B0-FRTO: Improved Operations through Enhanced En-Route Trajectories
- B1-FRTO: Improved Operations through Optimized ATS Routing
- B0-NOPS: Improved Flow Performance through Planning based on a Network-Wide view
- B1-NOPS: Enhanced Flow Performance through Network Operational Planning
- B0-ASUR: Initial Capability for Ground Surveillance
- B0-SNET: Increased Effectiveness of Ground-based Safety Nets
- B1-TBO: Improved Traffic Synchronization and Initial Trajectory-Based Operation
- B1-RPAS: Initial Integration of Remotely Piloted Aircraft (RPA) Systems into non-segregated airspace
Overview of Traffic on Tracks and No Tracks
Global Oceanic ADS-B Benefits
Initial Oceanic Assessment

- High level assessment of 8 oceanic areas
- Based on 1,000’ climb fuel savings
- Up to 3 climbs per flight
- Vetted with IATA airline member familiar with oceanic operations
- Considered conservative and achievable
Oceanic Assessment Benefits

Estimated $439 million in 2018

<table>
<thead>
<tr>
<th>Major Oceanic FIRs</th>
<th>Commercial IFR Flights (000s)</th>
<th>Total Fuel Climb Savings (000s)</th>
<th>GHGs (000s Tonnes CO₂ Equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific</td>
<td>131</td>
<td>$169,776</td>
<td>446.4</td>
</tr>
<tr>
<td>Shanwick / Gander</td>
<td>390</td>
<td>$127,000</td>
<td>332.8</td>
</tr>
<tr>
<td>New York-Santa Maria</td>
<td>138</td>
<td>$64,584</td>
<td>169.8</td>
</tr>
<tr>
<td>US Coastal</td>
<td>109</td>
<td>$7,358</td>
<td>19.3</td>
</tr>
<tr>
<td>Tasman Sea</td>
<td>48</td>
<td>$3,240</td>
<td>8.5</td>
</tr>
<tr>
<td>Mumbai</td>
<td>22</td>
<td>$1,337</td>
<td>3.5</td>
</tr>
<tr>
<td>North Atlantic above 65°</td>
<td>46</td>
<td>$21,528</td>
<td>56.6</td>
</tr>
<tr>
<td>South Pacific</td>
<td>20</td>
<td>$43,920</td>
<td>115.5</td>
</tr>
<tr>
<td>Total</td>
<td>904</td>
<td>$438,742</td>
<td>1,152.4</td>
</tr>
</tbody>
</table>
Work Underway and Moving Forward
Payload being developed by Harris Corporation

- Harris selected to build 81 space-qualified ADS-B receivers in June 2012
- 50+ years designing and manufacturing space hardware and major FAA contractor
- Design phase complete; production starting

Hosted Payload Operations Center to be supported by Iridium

- Developed by an Iridium/Boeing team in Virginia and Arizona

Systems engineering and ground data processing system by Exelis

- Exelis has significant expertise and existing infrastructure supporting the FAA ADS-B terrestrial system deployment
- Successful Preliminary Design Review completed in Sep 2013

On-track to meet first launch in early 2015
Initial Operations Capability late 2017
Harris ADS-B Payload Development On Target

- Harris ADS-B Payload Critical Design Review successfully completed in May 2013
- Payload completed the Test Readiness and Production Readiness reviews in October 2013
- Payload Qualification Unit completed space qualification testing in March 2014
- Payload Qualification Unit will be shipped to Thales Alenia Space in France for further integration and testing with the satellite
- Production of Payload Units has begun
Hosted Payload

Inverted Hosted Payload
Coverage

- Avionics standards identify classes of airborne transmitters with power outputs of 125 Watts, 250 Watts and 500 Watts

- Gaps in predicted coverage are associated with:
 - Cone of Silence – caused by aircraft antenna
 - Imperfect overlap of adjacent satellite coverage patterns
 - FRUIT – Interference from other ground-based and airborne transmitters
Regulatory Roadmap

Focus on 4 Areas:

1. ICAO North Atlantic (NAT)
2. ICAO Global Assemblies and Panels
3. International Telecommunication Union (ITU)
4. Other Stakeholders – Transport Canada, CPWG (Cross Polar Working Group), ADS-B 4G, etc.
1. ICAO North Atlantic (NAT)

- NAT SPG contributory groups (NAT IMG, NAT SOG & NAT EFG) have received initial CONOPS briefings

- NAT Economic and Financial Group (EFG) also received Benefits Analysis

- NAT EFG is further exploring overall NAT benefits

- Next contributory group meetings in May and June
 - Will focus on support and work to be done.
 - Will present high level safety plan (to NAT Safety Oversight Group – NAT SOG)
2. ICAO Global Assemblies & Panels

- Presentations made to ICAO regional groups on the initiative
- Separation and Airspace Safety Panel (SASP) provided input on how to approach collision risk modelling
- CONOPS will be presented to new ICAO Air Traffic Management Operations Panel (ATMOPSP) in April
- ICAO Position for the International Telecommunication Union (ITU) World Radiocommunication Conference 2015 (WRC-15) currently DOES NOT include protection for 1090 MHz for aircraft to satellite
- Updated ICAO Position may include information about space-based ADS-B frequency allocation requirements
3. International Telecommunication Union (ITU)

Goal is that the ITU will approve allocation of 1090MHz for Aircraft to Satellite ADS-B signal at the World Radio Conference (WRC) in November 2015.

Industry Canada submitted a proposal that CITEL (a Regional ITU Group) recommend this subject be included in ITU Regional Director’s Report so it can be added to WRC-15 agenda.

Supporting Proposed Draft New Report (PDNR) has been developed by ITU Working Parties and may be included in updated ICAO Position Briefing planned at Asia-Pacific Telecommunity (APT) Preparatory meeting for WRC-15.

Working with as many ITU Regions as possible on the frequency allocation/WRC-15 agenda issue.
4. Other Stakeholders

Transport Canada

- Regular coordination meetings on ICAO working papers
- Good cooperation on numerous initiatives, particularly frequency spectrum issue

Cross Polar Working Group

- Presentation made on the Space Based ADS-B initiative with positive feedback from participants

ADS-B 4G meeting in Ottawa February 2014

- Presentation on concept positively received
Actions Going Forward

- Continue to collaborate with ANSPs, IATA/industry and ICAO/regulator to demonstrate and validate incremental improvements.
- Leverage existing technology and continue to improve service, e.g., RLongSM and RLatSM.
- Operational trials involving airlines/ANSPs will be used to demonstrate capabilities and support the safety case.
In summary

• Global ADS-B Surveillance is a “Game Changer” for aviation
• Significant fuel & GHG savings
• Avoids ADS-B ground based replacement or some initial installation costs
• Benefits to domestic traffic can be realized in remote areas or through improved air traffic flow management to and from oceanic airspace
• Public will benefit from safer + more expeditious flights in remote, polar and oceanic airspace worldwide
• Opportunity to boost aviation innovation & the environment globally