New trends in satellite communications
Presentation summary

- INEO E&S Aeronautical Export Department
- Satellite access analysis
- Anticipating the future
Presentation summary

- INEO E&S aeronautical export department
- Satellite access analysis
- Anticipating the future
INEO E&S Aeronautical Export Department

→ INEO E&S designs, builds, installs and maintain Information and Communication Systems
INEO E&S

At a glance
Skills – Fields of activities

Infrastructures
- Power stations
- Solar power systems
- Secured electrical distribution
- Airfield lighting
- Monitoring & Control
- Navigational Aids (VOR-ILS-DME-NDB-DF)

Communication Systems
- VHF, HF, MW, V-Sat Communications
- LAN / WAN Networks
- Secured optical fiber networks (data collection around the runway)
- Remote VHF stations
- Monitoring & Control

Air Traffic Control
- Voice Communication Switching System (VCSS)
- Meteorological Systems
- AFTN / AMHS switch
- Aeronautical Information Systems (AIS)
- Time Synchronisation
- Recording Systems
- ATIS / D-ATIS
- Integrated Consoles
- 3D tower simulators
Scope of work

Aeronautical System Integrator

- Project Management
- Engineering / Detailed design
- Equipment procurement
 - Integration
 - Overseas Transport
 - Installation and Commissioning
 - Training
 - Maintenance
The strength of an expertise dedicated to the customer

A multidisciplinary technical expertise for the benefits of the customer:

- Pool of Aeronautical Experts
- Pool of Telecommunications Experts
- Software development engineers
- Design department
- Integration facilities
- Partnerships with strategic suppliers
INEO E&S develops its own products dedicated to the Air Traffic Control world:

Concerto Voice Communication Switch

3D Tower simulator

Voice@net Voice Communication Switch Simulator
VHF coverage and VSAT network for INAC (Venezuela)

International Civil Aviation Organization (ICAO)

Supply, installation, commissioning, training of the technical staff of the civil aviation in order to implement a VSAT network of 29 stations and 8 VHF stations

- VHF radio coverage studies, design of the VSAT network and of the microwave links
- Interconnection of the VSAT system with the Radar, VHF, AFTN, ATN and ATS/DS voice switch
- Monitoring and control of all active equipment from two geographically separated centers
- Turnkey solution including the provision of space segment and operation of the network
INAC network

TDMA based solution using SkyWAN modem
- Meshed network
- Low bandwidth consumption

Frame Relay network with Memotec product
- Reliable product
- Well suited to Aeronautical networks

An evolutive network:
- Upgrade to 31 stations in 2008
- RADAR Broadcast
- Integration of AMHS in 2010
Aeronautical VSAT networks in Africa: SADC-2 / NAFISAT / IVSAT

ATNS

Date: 2006 - 2008

Renewal of the VSAT network for SADC and NAFISAT countries as well as ATNS domestic network (IVSAT)

- Turnkey VSAT network including 43 stations in 28 countries for fixed services (SADC and NAFISAT) as well as mobile services (IVSAT)
- Interconnection with AFISNET (ASECNA)
- On demand bandwidth allocation
- Monitoring and control on each site with two centralized centers (Nairobi and Johannesburg)
- Seamless integration with the Radar system, VHF, AFTN, ATN and ATS/DS
Reference – Telecommunication Project

Peruvian VSAT project

CORPAC

Date: 2009 - 2011

Customer objective

– VSAT network for the new RADAR system
– Migration of existing services
– 8 stations across the country

INEO Solutions

– Turnkey solution including studies, VSAT stations and space segment allocation
– Fully hardware-redundant system
– Main link through satellite, backup link through existing REDAP network (terrestrial)
Presentation summary

- INEO E&S Aeronautical Export Department
- Satellite access analysis
- Anticipating the future
Satellite access analysis
Incident of ANIK E2 on January 20th 1994

On January 20th, 1994, Telesat Canada’s Anik E2 satellite experienced an attitude control failure due to a solar storm. Anik E2 began tumbling uncontrollably. The satellite was eventually recovered using a unique ground-based determination and control system. Anik E2 resumed service on August 1st, 1994, about six months after the solar flare.

- Satellite was back into business using a innovative technique based on ground loop control (GLACS)
- Enhanced satellite availability improvements
Satellite attitude methods

- **Attitude control is mainly computed inside the satellite**
 - Position sensors for Three-axis regulation
 - Phase comparison techniques to obtain the Round Trip Time (distance estimation)

- **Telecontrol, Tracking and Command (TT&C) link with earth operation center.**
 - Communication link in Payload band (C, Ku or Ka).
 - Backup link in S-band using an on-board low-gain antenna
Satellite obit variations

- Satellite's orbit is never perfect, the latitude and longitude vary with time.
- Centre of Box predicts are used to point ground antennas at the satellites in orbit.

Path of the satellite over a one-week period. Each day, there are two points where the satellite comes closest to the centre of the station keeping box.
3.8m C-Band antenna pattern

3.8m C-band offset-feed antenna. Pattern given at 3.950 GHz.

0.05° variation is minimal: # 0.3 dB (linear approximation)
Incident of ANIK F1 May 10th 2011

“[…] Anik F1 suffered an unanticipated and unforeseeable attitude disturbance which caused a loss of earth lock. […] the attitude disturbance was caused by a high acceleration imparted on the spacecraft (which was beyond the control system to handle), which in turn was caused by a ruptured heat pipe on the south west deployable radiator. […]”

David Wendling
Vice President, Space and Network Engineering TELESAT

- Shows the progress accomplished since 1994: 1 day of service perturbation
- Satellite communication still can have troubles
- Telesat has one of the biggest availability: more than 99.97% (99.989 % in 2004)
Presentation summary

• INEO E&S Aeronautical Export Department

• Satellite access analysis

• Anticipating the future
Anticipating the future

→ Satellite technologies & IP features
Presentation summary

- INEO E&S aeronautical export department
- Satellite access analysis
- Anticipating the future
 - Satellite access: the TDMA hegemony?
 - The IP convergence
Satellite Access:

the TDMA hegemony?
Point to Point - SCPC

- One carrier per link
- Each carrier only contains information for remote site
- Hubless connections (Point to Point)
- One pair of modem per connection

Well suited for:
- Networks with a high percentage of permanent circuits
- High availability and robustness
- Small meshed networks or large hybrid networks
Point to Multipoint - MCPC

- One carrier per station
- Each carrier contains information for different remote sites

Well suited for:
- Networks with a majority of permanent circuits
- Star/Hybrid topologies (Star with some meshed links)
- High availability and robustness
- Asymmetric traffic
TDMA

One carrier shared by a large number of stations

- Frequency hopping: Multi Carrier
- Time divided in slots.
- Synchronisation stations (one main, one stand by)

- Well suited for:
 - Networks with a high percentage of DAMA circuits
 - Full Mesh topologies with a large number of sites
 - Flexibility
Bandwidth Allocation

Bandwidth can be allocated permanently (PAMA) or on demand (DAMA)

PAMA Services:
- Radar
- VHF

- **Low JITTER**
 - No BW request

DAMA Services
- AFTN, AMHS
- ATS/DS
- RCMS (VOR, Radar, VHF, etc)
- M&C

- **BW on demand**
 - PAMA on demand for real time (low jitter)
SCPC/MCPC improvements

Three S/MCPC technical improvements have been developed:

- Adaptative modulation
- Carrier in Carrier
- Use of DVB for multicast stream
Adaptative modulation

Clear sky conditions
→ Eb/N0 is higher than expected by the modulator
→ Higher state modulation

Both MODEM exchange information about the current Eb/N0. A specific constructor-dependent algorithm enables a change in the modulation.
Modulation and coding influence
Adaptative modulation is useful for ATC technologies to get a better throughput for data transfer.

Due to rain falls Eb/N0 is progressively reduced. → Lower state modulation
Based on “Adaptive Cancellation”, Carrier-in-Carrier (CnC) allows carriers in a Duplex satellite link to occupy the same transponder space.

Without double talk Carrier-in Carrier

With double talk Carrier-in Carrier

Carrier-in-Carrier is a Registered Trademark of Comtech EF Data
DoubleTalk is a Registered Trademark of Applied Signal Technology, Inc.
DoubleTalk® Carrier-in-Carrier®

Combined with proper Modulation and FEC, Carrier-in-Carrier allows for multi dimensional optimization

• Reducing bandwidth
 > Occupied Bandwidth & Transponder Power
• Reducing earth RF segment
 > BUC/HPA Size and/or Antenna Size
• Increasing throughput
• Increasing link availability
• Or a combination to meet different objectives
DVB-S coding

DVB-S2 in transmission from the hub
– QPSK, 8PSK, 16APSK, 32APSK
– Roll-off: 20%, 25%, 35%
– ACM capable

Classic 8/Q PSK transmission in reception
MCPC/SCPC analysis

Advantages

- PAMA oriented connection
- Cheaper RF part on the remote site
 - Well suited for desert area
 - Low upload traffic
- Cheap unit price
- Star topology

- MCPC:
 - Well suited for asymmetric traffic
 - Cheaper hardware (less modulators)

Drawbacks

- No bandwidth on demand (FDMA systems exists)
- Higher frequency spectrum consumption
- Bad suited for Hybrid / Meshed topology
- Requires hardware and frequency spectrum for new connections
Network limits

SCPC MODEM are cheaper by 30% to 70% compared to TDMA MODEM, depending on options and features

• SCPC are suitable for network with few inter-site connections (1 to 3 connections).
• When more connections are required MF-TDMA is more effective

> Reduced number of hardware
> Shared bandwidth
TDMA improvements

- Use of turbo-codes: TPC and company-restricted codes (Turbo-φ).
 - Lower Eb/N0 than Viterbi and Reed Solomon codes

- Use of lower Roll-off factors (0.2)
 - Improves MF-TDMA bandwidth shaping

- No need for an expensive station for time synchronization:
 - integrated in the MODEM (master MODEM)

- Improved safety
Roll-off factor optimization

- A better (lower) Roll-off factor enhances the spectral efficiency of the system:

\[Bw = \text{Symbol_rate} \times (1 + \text{Roll-off_factor}) \]

→ Reduces consumed bandwidth

→ Useful in MF-TDMA
Improved safety by authentification

- **TDMA encryption**: unauthorized station cannot enter the network nor decode the data
TDMA analysis

Advantages

- Bandwidth on demand
- Tighter frequency spectrum
- Network flexibility:
 - Add station
 - Add circuits / services
- Powerful in meshed network
- Less hardware

Drawbacks

- Modem cost
- Big RF part (large carrier)
 - Larger Antenna/HPA
- Same RF in the network
- Sync station (and backup sync station) station required
- TDMA header (SLL)

Satmex6 - Ku
TDMA vs MCPC/SCPC

TDMA is more flexible than MCPC/SCPC, at the expense of RF part.

Both technologies evolve in parallel, TDMA is not newer or better than MCPC/SCPC (both technologies now support Turbo coding), they answer to different needs and topology

→ Strategic and political choice
→ SCPC/MCPC is suited for STAR topology and Autonomous remote sites
The IP convergence
Voice communications

- VCSS **will be** compatible to be connected directly over IP (and ideally, not through a box converting Voice to IP)
- ATS communication **will be** fully compatible with VoIP

For the Mobile Service, Frame Relay remains one of the best options:
- Efficient (low overhead)
- Reliable (INEO installed more than 100 stations in Frame Relay)
Frame Relay is a layer 2 protocol, whereas IP is at layer 3

Advantages

- Flexibility of configuration
- Mesh structure with automatic routing (static or dynamic)
- Low price (widespread)

Drawbacks

- Bandwidth not optimized
- QOS

ISO level

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>Frame Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Encapsulation

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>Frame Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>packet</td>
<td></td>
<td>frame</td>
</tr>
</tbody>
</table>

Efficiency

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>Frame Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td>High – 85% for voice</td>
</tr>
</tbody>
</table>

G729 data rate

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>Frame Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 kbps</td>
<td></td>
<td>27 kbps</td>
</tr>
<tr>
<td>27 kbps</td>
<td></td>
<td>11 kbps</td>
</tr>
</tbody>
</table>

Advantages

- Flexibility of configuration
- Mesh structure with automatic routing (static or dynamic)
- Low price (widespread)

Drawbacks

- Bandwidth not optimized
- QOS

- Optimization of space segment
- QOS
- Supports various protocols (async, sync, E&M)

- Hardware cost
- Proprietary of access device type
A declining technology

Frame Relay Access Devices are no longer improved
 → Evolutions and new feature only
 → No major product evolutions

Satellite MODEM are dropping Frame Relay:

 New ND Satcom IDU 1070: Fully IP
 → Problems for spare parts
 → Small market with higher product cost
Data transfer tendencies

Most of Data services are turning to IP

- **AMHS** over IP instead of AFTN
- **RADAR** service over IP instead of serial

RADAR service requires fixed delay to compute country-wide data

→ Jitter is critical

→ IP is bad suited to synchronism and jitter-free application

SOLUTION:

Huge bandwidth (Optical Fiber)

Use of smart concepts: QOS/TOS IP
TCP-Acceleration

TCP-A:

-Selective acknowledgement
 > Receiver informs the transmitter which packets must be re-sent

-Multiple packet emission: large « Window » transmission
 > Transmission of multiple packets without Ack
 > Reduced number of Ack

-Improved file transfer through satellite
 > Lower delay impact on file transfers
 > Higher data throughput
Thank you for your attention
Contacts

INEO ENGINEERING & SYSTEMS - Head Office
Zone Aéronautique Louis Breguet – Route Militaire Nord – Bât. 8
78140 Vélizy Villacoublay (France)
Tel.: 33 (0)1 39 26 15 00 / Fax: 33(0)1 30 70 17 20
http://www.ineo-es.fr/

INEO do Brasil Integração de Sistemas Ltda
Av. Almirante Barroso, 52-14 andar (parte)
20031-000 Rio de Janeiro (Brésil)

Contact: Jacques Olivier Klotz
Head of Aeronautical Export Department
jacques-olivier.klotz@ineo-gdfsuez.com
+33 6 80 61 38 72