3. Signals, Coding and Modulation

Contents

a. Digital signals
b. Digital-to-digital conversion
c. Analog-to-digital conversion
d. Digital-to-analog conversion
e. Analog-to-analog conversion
a. Digital signals

To be transmitted, data must be transformed to electromagnetic signals.
Data can be analog or digital. Analog data are continuous and take continuous values. Digital data have discrete states and take discrete values.

Signals can be analog or digital. Analog signals can have an infinite number of values in a range; digital signals can have only a limited number of values.
Comparison of analog and digital signals

Two digital signals: one with two signal levels and the other with four signal levels
Example

A digital signal has eight levels. How many bits are needed per level? We calculate the number of bits from the formula

$$\text{Number of bits per level} = \log_2 8 = 3$$

Each signal level is represented by 3 bits.

Example

A digitized voice channel, is made by digitizing a 4 KHz bandwidth analog voice signal. We need to sample the signal at twice the highest frequency (two samples per hertz). We assume that each sample requires 8 bits. What is the required bit rate?

Solution

The bit rate can be calculated as

$$2 \times 4000 \times 8 = 64,000 \text{ bps} = 64 \text{ kbps}$$
What is the bit rate for high-definition TV (HDTV)?

Solution
HDTV uses digital signals to broadcast high quality video signals. The HDTV screen is normally a ratio of 16 : 9. There are 1920 by 1080 pixels per screen, and the screen is renewed 30 times per second. Twenty-four bits represents one color pixel.

\[1920 \times 1080 \times 30 \times 24 = 1,492,992,000 \text{ or } 1.5 \text{ Gbps} \]

The TV stations reduce this rate to 20 to 40 Mbps through compression.

The time and frequency domains of periodic and nonperiodic digital signals

(a) Time and frequency domains of periodic digital signal

(b) Time and frequency domains of nonperiodic digital signal
Baseband transmission

Increasing the levels of a signal may reduce the reliability of the system.
Relationship between transmission speed, bandwidth and number of levels

\[Vtx = 2BW \times \log_2 L \]

Donde:
Vtx = bit rate
BW = Bandwidth
L = number of signal levels used to represent data

Example

Consider a noiseless channel with a bandwidth of 3000 Hz transmitting a signal with two signal levels.
The maximum bit rate can be calculated as

\[\text{BitRate} = 2 \times 3000 \times \log_2 2 = 6000 \text{ bps} \]
Example

Consider the same noiseless channel transmitting a signal with four signal levels (for each level, we send 2 bits). The maximum bit rate can be calculated as

\[
\text{BitRate} = 2 \times 3000 \times \log_2 4 = 12,000 \text{ bps}
\]

Example

We need to send 265 kbps over a noiseless channel with a bandwidth of 20 kHz. How many signal levels do we need?

Solution

We can use the Nyquist formula as shown:

\[
265,000 = 2 \times 20,000 \times \log_2 L
\]
\[
\log_2 L = 6.625 \quad L = 2^{6.625} = 98.7 \text{ levels}
\]

Since this result is not a power of 2, we need to either increase the number of levels or reduce the bit rate. If we have 128 levels, the bit rate is 280 kbps. If we have 64 levels, the bit rate is 240 kbps.
Shannon capacity

\[C = BW \times \log_2 \left[\frac{S}{N} + 1 \right] \]

Where:
- \(C \) = capacity of channel in bits/second
- \(BW \) = Bandwidth
- \(S/N \) = signal-to-noise ratio

Example

We can calculate the theoretical highest bit rate of a regular telephone channel (not a metallic line). A telephone line normally has a bandwidth of 3000. The signal-to-noise ratio is usually 3162. For this channel the capacity is calculated as

\[
C = B \log_2 (1 + SNR) = 3000 \log_2 (1 + 3162) = 3000 \log_2 3163 \\
= 3000 \times 11.62 = 34,860 \text{ bps}
\]

This means that the highest bit rate for a telephone line is 34,860 kbps. If we want to send data faster than this, we can either increase the bandwidth of the line or improve the signal-to-noise ratio.
Example

The signal-to-noise ratio is often given in decibels. Assume that SNR (dB) = 36 and channel bandwidth is 2 MHz. The theoretical channel capacity can be calculated as

$$SNR_{dB} = 10 \log_{10} SNR \quad SNR = 10^{\frac{SNR_{dB}}{10}} \quad SNR = 10^{3.6} = 3981$$

$$C = B \log_2 (1 + SNR) = 2 \times 10^6 \times \log_2 3982 = 24 \text{ Mbps}$$

The Shannon capacity gives us the upper limit; the Nyquist formula tells us how many signal levels we need.
b. Digital-to-digital conversion

Line coding and decoding

![Diagram showing line coding and decoding process]
Signal element versus data element

1. One data element per one signal element ($r = 1$)
2. One data element per two signal elements ($r = \frac{1}{2}$)
3. Two data elements per one signal element ($r = 2$)
4. Four data elements per three signal elements ($r = \frac{3}{2}$)

Line coding schemes

- Unipolar
- Polar
- Bipolar
- Multilevel
- Multitransition

- NRZ
- NRZ, RZ, and biphase (Manchester, and differential Manchester)
- AMI and pseudoternary
- 2B/1Q, 8B/6T, and 4D-PAM5
- MLT-3
Unipolar NRZ scheme

\[\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2 \]

Normalized power

Polar NRZ-L and NRZ-I schemes
NRZ-L and NRZ-I both have a DC component problem.

Polar RZ scheme
Polar biphase: Manchester and differential Manchester encoding

In Manchester and differential Manchester encoding, the transition at the middle of the bit is used for synchronization.
Bipolar schemes: AMI and pseudoternary

In $mBnL$ schemes, a pattern of m data elements is encoded as a pattern of n signal elements in which $2^m \leq L^n$.
Multilevel: 2B1Q scheme

<table>
<thead>
<tr>
<th>Next bits</th>
<th>Next level</th>
<th>Next level</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>01</td>
<td>+3</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>11</td>
<td>-3</td>
<td>+3</td>
</tr>
</tbody>
</table>

Transition table

Summary of line coding schemes

<table>
<thead>
<tr>
<th>Category</th>
<th>Scheme</th>
<th>Bandwidth (average)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar</td>
<td>NRZ</td>
<td>$B = N/2$</td>
<td>Costly, no self-synchronization if long 0s or 1s, DC</td>
</tr>
<tr>
<td>Unipolar</td>
<td>NRZ-L</td>
<td>$B = N/2$</td>
<td>No self-synchronization if long 0s or 1s, DC</td>
</tr>
<tr>
<td>Unipolar</td>
<td>NRZ-I</td>
<td>$B = N/2$</td>
<td>No self-synchronization for long 0s, DC</td>
</tr>
<tr>
<td>Bipolar</td>
<td>Biphas</td>
<td>$B = N$</td>
<td>Self-synchronization, no DC, high bandwidth</td>
</tr>
<tr>
<td>Bipolar</td>
<td>AMI</td>
<td>$B = N/2$</td>
<td>No self-synchronization for long 0s, DC</td>
</tr>
<tr>
<td>Multilevel</td>
<td>2B1Q</td>
<td>$B = N/4$</td>
<td>No self-synchronization for long same double bits</td>
</tr>
<tr>
<td>Multilevel</td>
<td>8B6T</td>
<td>$B = 3N/4$</td>
<td>Self-synchronization, no DC</td>
</tr>
<tr>
<td>Multilevel</td>
<td>4D-PAM</td>
<td>$B = N/8$</td>
<td>Self-synchronization, no DC</td>
</tr>
<tr>
<td>Multiline</td>
<td>MLT-3</td>
<td>$B = N/3$</td>
<td>No self-synchronization for long 0s</td>
</tr>
</tbody>
</table>
Two cases of B8ZS scrambling technique

B8ZS substitutes eight consecutive zeros with 000VB0VB.

a. Previous level is positive.

b. Previous level is negative.
Different situations in HDB3 scrambling technique

HDB3 substitutes four consecutive zeros with 000V or B00V depending on the number of nonzero pulses after the last substitution.
c. Analog-to-digital conversion

Components of PCM encoder
Quantization and encoding of a sampled signal

Components of a PCM decoder
The process of delta modulation

Delta modulation components
Delta demodulation components

d. Digital-to-analog conversion
Digital-to-analog conversion

![Diagram showing digital-to-analog conversion process]

Types of digital-to-analog conversion

- Amplitude shift keying (ASK)
- Frequency shift keying (FSK)
- Phase shift keying (PSK)
- Quadrature amplitude modulation (QAM)
Bit rate is the number of bits per second. Baud rate or Symbol rate is the number of signal elements per second.

In the analog transmission of digital data, the baud rate is less than or equal to the bit rate.

Relationship between Vtx and Vm

The relationship between data rate (N) and baud (symbol) rate (S) is the following:

\[S = \frac{1}{T} \quad \quad N = S \log_2 L \quad \quad r = \log_2 L \]

Where:
- \(T \) = period of the transmitted digital signal
- \(S \) = Baud (symbol) rate in symbols/seg
- \(N \) = bit rate in bps
- \(r \) = number of data elements carried in one signal element
- \(L \) = number of significative changes in the line
Example

An analog signal has a bit rate of 8000 bps and a baud rate (Vm) of 1000 baud. How many data elements are carried by each signal element? How many signal elements do we need?

Solution

In this example, Vm = 1000, Vtx = 8000, and r and L are unknown. We find first the value of r and then the value of L.

\[
S = N \times \frac{1}{r} \quad \Rightarrow \quad r = \frac{N}{S} = \frac{8000}{1000} = 8 \text{ bits/baud}
\]

\[
r = \log_2 L \quad \Rightarrow \quad L = 2^r = 2^8 = 256
\]

Binary amplitude shift keying
Implementation of binary ASK

Bandwidth of full-duplex ASK
Binary frequency shift keying

Binary phase shift keying
Implementation of BPSK

QPSK and its implementation
Concept of a constellation diagram

Three constellation diagrams: ASK, BPSK, QPSK
Constellation diagrams for some QAMs

a. 4-QAM

b. 4-QAM

c. 4-QAM

d. 16-QAM

e. Analog-to-analog conversion
Types of analog-to-analog modulation

- Amplitude modulation
- Frequency modulation
- Phase modulation

Amplitude modulation

- Modulating signal
- Carrier frequency
- Modulated signal

Multiplier
Oscillator

$\delta_{AM} = 28 \cdot l$
The total bandwidth required for AM can be determined from the bandwidth of the audio signal: $B_{AM} = 2B$.

AM band allocation
The total bandwidth required for FM can be determined from the bandwidth of the audio signal: $B_{FM} = 2(1 + \beta)B$.

Frequency modulation

[Diagram of frequency modulation]
FM band allocation

Phase modulation