Overview of Continental En-route Navigation Specifications

RNAV 5, RNAV 2 and RNAV 1

Learning Objectives

- RNAV applications in a continental en-route context
- Characteristics of available navigation specifications
 - RNAV 5, RNAV 2 and RNAV 1
- Review the RNAV 5 navigation specification
 - ANSP considerations
 - Navigation specification
- Example implementation
 - ECAC Basic-RNAV (B-RNAV)
- Summary

Application of Navigation Specification by Flight Phase

<table>
<thead>
<tr>
<th>NAVIGATION SPECIFICATION</th>
<th>FLIGHT PHASE</th>
<th>En Route Oceanic / Remote</th>
<th>En Route Continental</th>
<th>Approach</th>
<th>Initial</th>
<th>Intermed</th>
<th>Final</th>
<th>Missed</th>
<th>CEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAV 5 (RNP 10)</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>RNAV 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RNAV 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RNP 4</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP AIP-8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP AIP-8-ADF</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP AIP-8-ADF/OM</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The PBN Manual

Volume II, Part B

Chapter 2, Implementing RNAV 5
Chapter 3, Implementing RNAV 1 and RNAV 2

Continental En-route

- Multiple navigation specifications available
- Need to assess available:
 - Communication
 - Surveillance
 - Navigation infrastructure
- Need to identify requirements for:
 - Route spacing and aircraft separation
 - Function of traffic density, operational error, route configuration etc.
 - Navigation performance
 - Aircraft functionalities

RNAV 5

- Characteristics
 - ± 5 NM for 95% of the flight time
 - Typically in a radar surveillance environment
 - Typical route spacing – Low ATC intervention rate
 - 16.5 NM uni-directional
 - 18 NM bi-directional
 - Typical route spacing – High ATC intervention rate
 - 10 -15 NM
 - Predicated on VOR/DME as a minimum
 - Designed for lowest common denominator
RNAV 2

- Characteristics
 - ± 2 NM for 95% of total flight time
 - Radar surveillance
 - Route spacing at least 8 NM
 - Typical routes (FL180 and above)
 - Authorised for GNSS or DME/DME/IRU (where the infrastructure supports such routes)
 - Typical routes (Below FL180)
 - GNSS may be required if DME/DME coverage not sufficient

RNAV 1

- Characteristics
 - ± 1 NM for 95% of total flight time
 - Radar surveillance
 - Route spacing under study
 - Authorised for GNSS or DME/DME or DME/DME/IRU (depending on available infrastructure)

- RNAV 1 implementation in Continental En-route doesn’t exist today

RNAV 2 and RNAV 1

- Also used in terminal airspace applications
 - SIDs, STARS, runway transitions
- Greater functional capability
 - Path terminators
 - Display requirements
 - Navigation database is required
- The navigation specification is the navigation specification, not the application
 - For instance RNAV 1 nav spec can be used for and Enroute navigation application but also for SID/STAR navigation application

RNAV 5

- The Navigation Specification

 - Background
 - ECAC B-RNAV
 - Purpose
 - An RNAV application
 - Not requiring onboard performance monitoring and alerting
 - Other considerations are described in the Nav spec
 - Airspace user information
 - AIPs, ICAO Regional Supplementary Procedures

RNAV 5

- ANSP Considerations
 - Navaid Infrastructure
 - Comm and ATS surveillance
 - Obstacle clearance and route spacing
 - Leg transitions (no requirement for automatic leg sequencing)
 - Publication (AIP, WGS 84)
 - Controller training
 - ATS system monitoring

RNAV 5

- Aircraft Requirements

 - System performance
 - Lateral total system error ±5 NM for 95% of the flight time
 - Integrity (misleading information = Major FC)
 - Continuity (loss of function = Minor FC)
RNAV 5 Aircraft Requirements

- Specific navigation services
 - INS/IRS (with time limitation)
 - VOR/DME
 - DME/DME
 - GNSS

RNAV 5 Aircraft Requirements

- Functional requirements
 - Continuous indication of position relative to track
 - Distance and bearing to the active (To) waypoint
 - Ground speed or time to the active (To) waypoint
 - Only 4 waypoints held in system at a time
 - Failure indication of the RNAV system

RNAV 5 Aircraft Requirements

- What RNAV 5 doesn’t have
 - No navigation database - waypoints can be manually entered
 - No fly-by capability
 - No ‘Direct To’ function

RNAV 5 Operational Considerations

- Flight planning
 - For example, ‘R’ in field 10 for B-RNAV
- ABAS availability
 - RAIM prediction
- General operating procedures
 - Cross-track error monitoring
- Contingency procedures
- Training
- Navigation database
 - No requirement, but if present, database must be current

RNAV 5 Approval Process

- Navigation specification does not in itself constitute regulatory guidance
- Aircraft eligibility (certification process)
 - Does not imply aircraft re-certification
- Operator approved under National operating rules
- B-RNAV approval is good-to-go for RNAV 5
 - EASA AMC 20-4 demonstrate compliance with RNAV 5 nav spec
 - FAA AC 90-96A demonstrate compliance with RNAV 5 nav spec
 - Operating approval (as required by the OPS authority)

Example of State Implementation - RNAV 5

- B-RNAV implemented in ECAC on 23 April 1998
- Europe’s first step of RNAV implementation
- Minimum level FL95
- Contingency predicated on continued carriage of VOR, DME
Example of State Implementation - RNAV 5

- Limitations
 - B-RNAV procedures must be above MSA/MRA (safety case assumption)
 - No more than 4 waypoints per 100 track miles
 - En-route obstacle clearance criteria from PANS-OPS apply
 - Minimum distance between waypoints – 6 NM to 41 NM depending on track angle change, type of turn and max speed

Northern France – Before RNAV 5

Northern France – After RNAV 5

Geneva – Before and After RNAV 5

Swiss Sectorisation – Before and After RNAV 5

B-RNAV Benefits

- Introduced a system of specialised routes
- Pre-organised the flows e.g., segregation of overflying traffic from climbing and descending traffic
- Track alignment – origin to destination
 - Reduce track miles and saving in fuel and on emissions
- Re-sectorisation a consequence
 - In Swiss example resulted in 30% increase in capacity
Lessons Learned from BRNAV implementation

- Only maximise benefits with an airspace re-design
- Can not do RNAV implementation in isolation
 - Consider consequences of En-route change on terminal airspace
 - E.g. connectivity into and out of that airspace
 - Particular issue given terminal airspace was non-RNAV
- Equipage and approvals
 - E.g. getting the fleet ready, managing transition period, managing exemption

Summary

- Learning objectives
 - RNAV applications in a continental en-route context
 - Characteristics of available navigation specifications
 - RNAV 5, RNAV 2 and RNAV 1
- RNAV 5 in detail
 - ANSP considerations
 - Navigation specification
- Example of State implementation - RNAV 5
 - Before and after ECAC B-RNAV
 - Lessons learned