FAA
GBAS System Development
for
Seminar on the Ionosphere and its Effect on GNSS Systems
Santiago, Chile
April 14-16, 2008

Carlos A. Rodriguez
GBAS Program Manager
Outline

• LAAS Program Background
• Integrity Analysis and Prototype Development
• GBAS Approval Process
• International Cooperation
• CAT-III Research & Development Activities
The Next Generation Air Transportation System (NextGen) Plan Defines A System That Can Meet Demands For The 21st Century

- Trajectory-Based Operations
- Performance-Based Operations and Services
- **Precision Navigation**
- Weather Integration
- Network-Centric Information Sharing
- Surveillance Services
- Equivalent Visual Operations
- Super Density Operations
- Layered, Adaptive Security

April 14-16, 2008 FAA GBAS Activities
LAAS and Next Gen

• The FAA has identified LAAS as a “Contributor” program for NextGen.

• The Operational Evolution Partnership (OEP) identified GBAS as one of the enabling technologies in the OEP plan that directly supports the transformation of the National Airspace.

• LAAS was cited as a promising solution in the New York/New Jersey flight delay Task Force Report (December 6, 2007). The report recommends accelerating the development of LAAS.
LAAS Capabilities

• The Local Area Augmentation System (LAAS) Represents the U.S. Approach to the International Goal of an Interoperable GBAS Capability
• LAAS Provides a Navigation Signal That Supports the Most Demanding RNP Requirements
• LAAS is complementary to SBAS
• One LAAS Can Cover the Entire Terminal Area and Enables Precision Guidance
 – Precision approach for Category I, II & III
 – Multiple runway coverage
 – Complex procedures Guided missed approaches and departure procedures
 – Aircraft surface navigation
LAAS

Federal Aviation Administration

April 14-16, 2008 FAA GBAS Activities
Program Background

- Program Baseline Completed in 1999
- Established Government Industry Partnership (GIP) For Category-I Development in 1999
- GIP Experienced Delays Due to Integrity Issues
- In 2001, Strategy Changed To FAA Full Scale Development Contract for Category-I LAAS
- Contract Awarded To Honeywell In April 2003
 - Aggressive Schedule and Integrity Issues Resulted In Delays
- FAA Directed Program Back To R&D In February 2004
 - Lower Overall Program Risk, Resolve Integrity Issues
- Honeywell Contract Re-Structured To Resolve Integrity Risks
 - Restructure LAAS Integrity Panel & Develop Provably Safe Prototype
Current Activities

• **Integrity Analysis and Prototype Development**
 – Honeywell Contract
 – Deliver Honeywell SLS4000 GBAS

• **GBAS Approval Process**
 – System Design Approval - Audits in progress

• **LAAS Operational implementation**
 – Memphis prototype installation

• **CAT III LAAS**
 – CAT II/III ground facility specification
GBAS Integrity Method

• Integrity Analysis and Prototype Development
 – FAA GBAS prototype work under Honeywell Contract
 – Hazardous Misleading Information (HMI) Analysis underway to validate GBAS architecture/design
 – **Responsibility for GBAS Integrity resides in the Ground Facility**
 • The user (aircraft) receives a set of integrity parameters from the LGF and applies those in a set of standardized equations to determine protection levels
 • The user must check the calculated result against the requirement
 – **The Service Provider is responsible for ensuring that the uplink integrity parameters are accurate and that they provide the required function**
 • When used in the specified equations, the protection level must bound the user error
Hazardously Misleading Information (HMI) Report

- The HMI report details the process and assumptions that demonstrate a GBAS is safe.
 - A similar process was effective in verifying FAA Wide Area Augmentation System (WAAS) integrity
 - HMI report is a detailed summary of the integrity work
 - Tool used to help the technical team communicate with the certification authority

- The core of the HMI report is a series of assertions that, when taken together and shown to be true, completely define the integrity proof

- The HMI report details the analysis used to validate the series of assertions.
 - There are three ways to perform this validation,
 - a formal mathematical proof,
 - a data driven analysis or,
 - the consensus engineering judgment of a group of subject matter experts.
Hazardously Misleading Information (HMI) Analysis

• The five steps in the HMI analysis are:
 – Formalize and obtain approval for the top level integrity architecture;
 – Approve the fault trees;
 – Approve the complete list of threats;
 – Approve specific integrity analysis methodologies for each of the monitors; and
 – Complete and obtain approval for the HMI analysis document.

• Note that much of the work on the above five steps has been accomplished under the FAA contract
 – The HMI work will focus on the formal approval and documentation of this work.
LAAS CAT I Approval Activities

• To be approved by FAA, system or equipment must be shown to meet ICAO, FAA or other (e.g. RTCA) recognized standard.
 – The baseline is the FAA Non-Federal LAAS Specification
 – System or equipment approval is only one of the requirements for NAS operation.
• GBAS CAT I Approval Process
 – Honeywell Submitted Application for SLS 4000 System Approval in 2006
 – System Design Approval (SDA) for Honeywell architecture in progress
 – Facility and Service Approval for Memphis planned for 2008
LAAS Operational Implementation

- GBAS Implementation Activities in Memphis
 - GBAS Procedures for Memphis Airport (MEM)
 - LAAS straight in procedures for all runway ends
 - Developed GBAS Terminal Area Path (TAP) procedures
 - Coordination with MEM Air Traffic Control
 - Performing flight test with FAA Technical Center Aircraft and FedEx B727 aircraft
CAT II/III

• Near term initiative for single frequency CAT II/III GBAS
 – Ground rule: minimal changes to ground facility and transfer of some requirement responsibility to the aircraft
 – Develop requirements in line with current ILS auto-land criteria
 – Initial Requirement allocation proposal submitted by joint FAA/Boeing WG to RTCA
LAAS International Efforts

Rio De Janeiro, Brazil

Agana, Guam

Malaga, Spain

Sydney, Australia

Frankfurt, Germany

Bremen, Germany
International GBAS Working Group

• **Chairpersons**,
 – FAA-EUROCONTROL

• **Scope**
 – Discuss national and international GBAS plans and identify areas of cooperation and complementary activities, like GBAS integrity analysis, ionospheric data collection, safety assessments, early operational implementation activities

• **Group Composition**
 – **Nations/Service Providers**: FAA, EUROCONTROL, DFS Germany, AENA Spain, Airservices Australia, JCAB Japan, Korea, China, and DECEA Brazil.
 – **Industry**: Honeywell, Thales, LENS/MERC, NEC, Rockwell Collins, Boeing, AIRBUS.
 – **Airlines**: Continental Airlines, All Nippon Airways, Japan Airlines, Qantas.

• **Accomplishments**
 – Better understanding and practice of GBAS system approval, and the use of common test cases and tools
 – Transition from information exchange to working meeting
 • Test cases and data evaluation WG
 • Local business case WG
 • Operational implementation WG
 • Siting WG
Industry/International Activities

- Airbus
 - A380 GBAS equipped landing at Sydney
 - A 320 GLS certified

- Boeing
 - B 737 New Generation GLS certified
 - Qantas, Delta, Continental, TUIfly, Sonair, Air Berlin, Air Vanuatu
 - B787 rolled out with GBAS as standard equipment

- Multiple companies researching/developing versions of GBAS (Honeywell, Thales, Lens, NPPF Spectr)

- Countries planning to incorporate GBAS into their airspace (US, Australia, Germany, Spain, Italy, Brazil, Russia, Japan, Korea, China, Chile)

- FAA MoCs with Australia, Spain, Germany, Chile
International GBAS FAA Cooperation Activities

- **MOC Airservices Australia (AsA)**
 - CASA – Sydney operations
 - AsA-Honeywell Development contract
- **MOC DFS Germany**
 - TUI Flight Bremen flight trials
- **MOC AENA Spain**
 - December 2007 AENA flight trials with A 320 in Malaga
 - Coordination Meetings with AENA/Spain
- **Coordination with DECEA Brazil**
 - FAA Technical Center GBAS System
 - GBAS Flight Test
 - GBAS CONOPS
- **Chile MOC for GBAS cooperation**
GBAS Summary

- HMI analysis to validate that the CAT I system meets integrity design requirements
- Continuation of regulatory approval for the HI LAAS at Memphis, TN in 2008
- Facility and Service Approval at Memphis in early 2009
- Continued data collection/flight test to validate operational benefits (national/international)
- Coordination of development and approval activities with International community
- R&D to develop and validate CAT II/III requirements to support a 2008 CAT II/III decision point
Questions
Seminar on the Ionosphere and its Effect on GNSS Systems

LAAS Hazardously Misleading Information (HMI) Analysis

Presented to: Seminar on the Ionosphere and its Effect on GNSS Systems
Location: Santiago, Chile
Date: April 16, 2008
By: John Warburton AJP-652
Overview

• GBAS Integrity Method

• Current Work
 – Completion of the HMI Report

• Recent Accomplishments
 – Formulation of IRCAs and issue Tiger Teams

• Issues
 – Technical
GBAS Integrity Method

• Responsibility for GBAS Integrity resides in the Ground Facility
 – The user (aircraft) receives a set of integrity parameters from the LGF and applies those in a set of standardized equations to determine protection levels
 – The user must check the calculated result against the requirement
 • A protection level bound, or Alert Limit, is transmitted from the LGF with each procedure

• The Service Provider is responsible for ensuring that the uplink integrity parameters are accurate and that they provide the required function
 – When used in the specified equations, the protection level must always* bound the user error
 • *The probability of not bounding is the required integrity probability, CAT I is 2.0x10^-7 per approach
Integrity Performance Protection Level Bounding

Single Approach example of protection level bounding

Vertical NSE and vertical protection Level

Vertical NSE is always less than the calculated protection level

Navigation Flags are displayed when VPL exceeds VAL, 10M at 200 ft HAT

FAA LAAS Flight Test @ ACY Navigational Sensor Error (NSE)

TSP vs LTP NSE(m)

NMI from TDZ
N39 / RWY31 FAATC / 01-Apr-03 B / Appr#003

Federal Aviation Administration
LAAS HMI Analysis 04/16/2008
Current Work
Hazardously Misleading Information (HMI) Report

• An HMI report details the process and assumptions that demonstrate a GBAS is safe.
 – A similar process was effective in verifying FAA Wide Area Augmentation System (WAAS) integrity
 – HMI report is a detailed summary of the integrity work
 – Tool used to help the technical team communicate with the certification authority

• The core of the HMI report is a series of statements that, when taken together and are shown to be true, completely define the integrity safety case
 – Called the Integrity Risk Compliance Argument (IRCA)

• The HMI report contains the IRCA list as well as a summary of the ADD material for each IRCA statement
Hazardously Misleading Information (HMI) Analysis

• The five steps in the HMI analysis are:
 – Formalize and obtain approval for the top level integrity architecture;
 – Approve the fault trees;
 – Approve the complete list of threats;
 – Approve specific integrity analysis methodologies for each of the monitors; and
 – Complete and obtain approval for the HMI analysis document.

• Note that much of the work on the above five steps has been accomplished under the FAA PSP contract.
Recent Accomplishments

• Formulation of design-specific Integrity Risk Compliance Argument (IRCA) statements
 – System design Algorithm Description Documents (ADDs) for the Honeywell SLS-4000 were accepted by the FAA with comments
 – Resolution of the comments remained an issue

• Tiger teams, small focused group, were formed to resolve specific HMI issues, remaining ADD comments, and work the final design details
HMI Report IRCA Contents

• All sections of each IRCA compiled for the HMI report will conform to the following:

X.X.1 Threat Discussions (high level)
X.X.2 Algorithm Description (high level)
X.X.3 Integrity Risk Compliance Argument (assertions, etc.)
X.X.3.1 Threat or Threat Model
X.X.3.2 Method (Higher-level method techniques)
X.X.3.3 Models / Methods (details of implementation)
X.X.4 Justification of All X.3.3 Sections
 Detailed Algorithm
 Analyzed Data
 Validation
X.X.5 Dependencies
X.X.6 Conservative Methods
X.X.7 Data Sets (locations and quantity of days….)
X.X.8 Conclusions
Technical Issues

• **Current Tiger Team Activities**
 – Ionospheric storm integrity

• **Backup Slides**
 – Ephemeris Monitoring
 – Signal Deformation Monitoring and bounding of “Natural biases”
 – Sigma Pseudorange Ground
 – Tropospheric Error Bounding
GBAS Ionospheric Storm Integrity

• Ionospheric Storm Threat and Integrity
• Threat Model
• Threat Mitigation
• Issues
 – DCPS
• Summary
Ionospheric Storm Integrity

- Ionospheric storm activity **unobservable** to a GBAS station can not be mitigated by detection
- The GBAS airborne user can be impacted by a storm before the ground facility can see it, and integrity could be compromised
 - These cases must be shown to be sufficiently rare, or mitigated
- The **Ionospheric tiger team has determined a solution for the CAT I system**
 - The results are based on ionospheric storm threat model created from data collected within CONUS and assumptions about how a user will be threatened
 - Other implementer must evaluate their ionospheric environment to ensure that the CONUS threat model contains potential threats in their regions of interest
Ionosphere Anomaly Wave Front Model: *Potential Impact on a GBAS User*

Simplified Ionosphere Wave Front Model:
a ramp defined by constant slope and width

- **Front Speed:** 200 m/s
- **Front Slope:** 400 mm/km
- **Front Width:** 25 km
- **Airplane Speed:** \(\sim 70 \text{ m/s}\)
 (synthetic baseline due to smoothing \(\sim 14 \text{ km}\))
- **LGF IPP Speed:** 200 m/s
- **GBAS Ground Station**

Stationary Ionosphere Front Scenario:
Ionosphere front and IPP of ground station IPP move with same velocity.

Maximum Range Error at DH: \(425 \text{ mm/km} \times 20 \text{ km} = 8.5 \text{ meters}\)
CONUS Ionospheric Anomaly
November 20, 2003
Summary of Current Ionosphere Threat Model Parameter Bounds (Revised)

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Speed</th>
<th>Width</th>
<th>Slope (slant)</th>
<th>Max. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low elevation (< 15°)</td>
<td>90 – 750 m/s</td>
<td>25 – 200 km</td>
<td>30 – 375 mm/km<sup>(†)</sup></td>
<td>30 m<sup>(*)</sup></td>
</tr>
<tr>
<td></td>
<td>0 – 90 m/s</td>
<td>25 – 200 km</td>
<td>30 – 125 mm/km</td>
<td>25 m</td>
</tr>
<tr>
<td>High elevation (≥ 65°)</td>
<td>90 – 750 m/s</td>
<td>25 – 200 km</td>
<td>30 – 425 mm/km<sup>(†)</sup></td>
<td>50 m<sup>(*)</sup></td>
</tr>
<tr>
<td></td>
<td>0 – 90 m/s</td>
<td>25 – 200 km</td>
<td>30 – 125 mm/km</td>
<td>25 m</td>
</tr>
</tbody>
</table>

^(*) Max. error constrains possible slope/width combinations

^(†) Max. gradient is linearly interpolated between 15 and 65° elevation angles
Updated 2-D Threat Plot with All Significant, Validated Events (for Satellites above 12° Elevation)
Moving Ionosphere Delay Feature in Ohio/Michigan Region on 20 Nov. 2003

Data from 7 CORS stations in N. Ohio and S. Michigan

Initial upward growth; slant gradients $\approx 60 - 120$ mm/km

Sharp falling edge; slant gradients $\approx 250 - 330$ mm/km
(gradient as high as 410 mm/km obs.)

“Valleys” with smaller (but anomalous) gradients
Ionosphere Depletion 10/08/2003
WAAS Geo (122) as Observed by the LTP
Ionosphere Depletion 10/08/2003
WAAS Geo (122) and PRN 11 as Observed by the LTP
Ionosphere Depletion 10/08/2003
WAAS Geo (122) as Observed by the LTP

Depletion to AOR-W, Rio LTP data, 8 October 2003

UTC Hours of 8 October 2004 (into 9 October)
Final (Simplified) LAAS CAT I Ionosphere Anomaly Threat Model for CONUS

Linear bound:
\[y_{bnd} \text{ (mm/km)} = 375 + 50(\text{el} - 15)/50 \]

Also bounds on:
- Front speed wrt. ground: \(\leq 750 \text{ m/s} \)
- Front width: 25 – 200 km
- Total differential delay \(\leq 50 \text{ m} \) (varies with front speed wrt ground)
Mitigation of Ionosphere Anomaly Risk

- Since the “worst-case” ionosphere anomaly cannot be detected by ground facility CCD monitoring, the ground facility must inflate broadcast integrity parameters to eliminate user subset geometries that would be unsafe (by a revised definition → vert. error < 28 m at 200’ DH).

- Honeywell system achieves this by inflating appropriate broadcast parameters

- Stanford validated a parallel approach which achieves this by targeted inflation of $\sigma_{pr_{gnd}}$ and ephemeris P-values on a per-satellite basis (in VDB Message Type 1).

- The result of either method is lower CAT I user availability, but availability at most airports still exceeds 0.99 with all satellites healthy.
Stanford P-Value Inflation Results at Memphis Airport (RTCA 24-SV Constellation)
Stanford VPL Inflation Results at Memphis Airport (RTCA 24-SV Constellation)

Vertical Protection Levels at 6 - 0 km
- Uninflated VPL_{H0}
- Inflated VPL_{H0}

Ephemeris Protection Levels at 6 - 0 km
- Uninflated VPL_e
- Inflated VPL_e
Availability Estimates for 10 CONUS Airports Using Honeywell Methodology

RTCA 24-SV Constellation (No SV Outages)
All-in-View User Receiver Tracking All Satellites

<table>
<thead>
<tr>
<th>Airport</th>
<th>DH=6km</th>
<th>DH=5 km</th>
<th>DH=4 km</th>
<th>DH=3 km</th>
<th>DH=2 km</th>
<th>DH=1 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memphis</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Denver</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Dallas</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Newark</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Washington</td>
<td>0.980</td>
<td>0.982</td>
<td>0.985</td>
<td>0.994</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Orlando</td>
<td>0.988</td>
<td>0.990</td>
<td>0.993</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Chicago</td>
<td>0.997</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Tacoma</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Issues

• Anomalous ionospheric threat, when applied to the DCPS user, results in large position errors that are difficult to bound with the current definition of the protection levels
 – There is no bound on the allowable geometries for the DCPS users
 • Precision approach users must apply a protection level check
 – There is no required airborne check for ionospheric anomalies, and since they are unobservable to the GBAS, the safety case must assume that the user will experience the error
 – There is only one set of integrity parameters, and inflation required to protect users at 60nmi would impact PA users
Ionosphere Summary

- Safety case for CAT I Precision Approach mode is complete
- DCPS safety case has been put together based on the current standards and models, and at this point would impact PA availability if implemented for all DCPS users
- Current activity at ICAO and RTCA on Dmax and CAT II/III standards may provide relief
Summary

• Completion of the HMI report is now the priority within the LAAS Integrity Panel
 – Completion target date June 2, 2008

• Several issues have been identified, and are being addressed by the tiger teams

• Some tasks require additional analysis, but these are not expected to change the final design details and the report is expected on schedule
Backup Slides

- Other Tiger Team Issues
Ephemeris Monitoring

- Ephemeris data received from each satellite provides information needed to compute the satellites position
- Two failure modes are associated with this data
 - Type B faults are due to data failures, either by malfunction or failure of the satellite, or by control segment blunder
 - Data consistency checks are capable of detecting most of these failures
 - Type A faults are errors associated with movement of the satellite and include un-annunciated movement of the satellite (A2) and data failures immediately following a maneuver (A1)
- Maneuvers that occur out of view of the GBAS are problematic for data consistency tests, and must be accounted for in the safety analysis
Ephemeris Monitoring

• Ephemeris A2 failures were considered sufficiently improbable to disregard for CAT I GBAS
 – An A2 failure is an un-annunciated movement of a satellite

• On April 10, 2007, PRN 18 was repositioned by the GPS space segment without indicating bad health status
 – The movement was properly annunciated by a NANU

• Complete details were published in the GPS PAN report #58, July 2007
 – www.nstb.gps.tc.faa.gov
Ephemeris Monitoring
Observed GPS SPS Errors

SPS 3D Position Error During PRN18 Anomaly: 10 April 2007

PRN18 Marked Unhealthy at 234240

Preliminary
Ephemeris Monitoring

Mitigation

• Several new tests were added to the design that can be used to detect satellite displacement errors
 – The tests address the observed case without relying on monitoring NANUs
 – Also addresses problematic corner cases of the ephemeris B and A1 mitigations that were uncovered in the HMI analysis
 – Final simulations are being performed to show that all data failures following a maneuver can be detected
 • Including maneuvers out of view of the GBAS
Signal Deformation Monitoring and Natural Biases

- Satellite signals can be distorted by failures such that differential corrections will have errors for some set of users

- Natural (nominal, non-faulted) deformations exist
 - The airborne user design space is limited, any difference between the ground receiver and the user receiver implementation will cause errors that must be bounded
 - Natural bias errors must be bounded by $\sigma_{pr_{gnd}}$
 - Already one of the existing error sources in the PSP error table
Signal Deformation Monitor Threats
Nominal Signal Deformation (Digital Only) - Data

Estimates of C/A code Δ Sorted by SV Block Type (II, IIA, IIR)

Current ranging codes may have up to ±10ns of modeled digital distortion.

Courtesy: A. Mitelman
SDM Natural Bias Actions

- Satellites introduced into the constellation must be evaluated against the natural bias level protected by σ_{pr_gnd}
 - Relationship between SDM test statistic biases and user errors is being more precisely simulated
- Satellites with excessive natural bias must be additionally inflated or excluded
 - An additional test was added to the design to monitor the natural bias levels and perform this exclusion
- Details of a bias-monitoring test statistic and implementation are being completed by the tiger team
Sigma Pseudorange Ground

• All GBAS measurement errors have been characterized by magnitude, type, time constant, and potential for correlation
 – These must be represented in σ_{pr_gnd}
• Several errors are/can be bias-like over the duration of an approach
• Primary issue is the validation of the Honeywell-developed semi-statistical overbounding methodology which combine bias-like terms and noise-like terms into the required overbounding sigma
 – The validation approach uses a Monte Carlo simulation using selected geometries and bias error magnitudes
Reference Receiver Antenna Development

• Pseudorange measurement errors at the reference antennas are a significant portion of the errors present
• The FAA funded the development of a single-port L1/L2/L5 Right Hand Circularly polarized (RHCP) Multipath Limiting Antenna (MLA) aimed at reducing siting constraints and eliminating required bias calibration
• Ten antennas have been procured and were tested to evaluate production builds and are being used to update siting criteria
BAE ARL-1900 Production Antenna
Antenna Performance Comparison
Antenna Siting Constraint Update Testing
Antenna Siting Constraint Update Testing
Antenna Performance Comparison

• Both MLA designs have acceptable integrity performance
 – Errors can be represented in σ_{pr_gnd}
 – New design has smaller error allocations
 – RHCP design also provides additional siting flexibility

• PSP in Memphis will be upgraded with the new antenna design
Tropospheric Error Bounding

• A parameterized version of the LAAS tropospheric model was developed to explore the magnitude of range-domain model error
 – Investigation of the most significant troposphere parameters and range of observed values in underway
 – Characterization of expected errors due to differences in the observed weather at the LAAS and user locations
Tropospheric Parameters

• **Areas of Responsibility**
 – Determine nominal and maximum observed variation of temperature and humidity at selected locations
 • Use the model to simulate maximum expected LAAS errors
 – Determine values for tropospheric parameters which provide integrity for all users
 • Verify with data collection and simulation
 – Gather additional verification data from available public sources
 • Requires historical observations of the region’s weather activity