Airspace Optimization

Mr. Ernest Snyder
Regional Officer, Air Traffic Management
ICAO NACC Regional Office

P/02 - Agenda Item 5

NACC/WG/RAP/2 Meeting, 28 to 31 March 2023

Optimization

★Began with "what we have now, no investment"

★If you can't support what was requested, "What can you support?"

★ Collaboration, we are all involved

North American, Central American and Caribbean Working Group (NACC/WG)
Air Space Optimization Task Force

- Working Collaboratively
- Two Pronged Attack
- Moving to Free Route Airspace
- Results

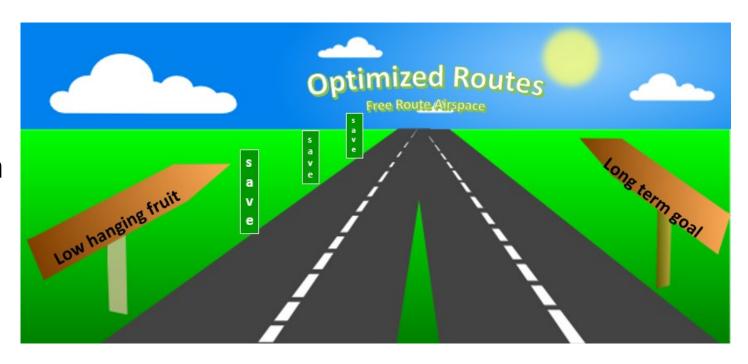
SAFETY

EFFICIENCY

ENVIRONMENTALLY - FRIENDLY

North American, Central American and Caribbean Working Group (NACC/WG)
Air space Optimization Task Force

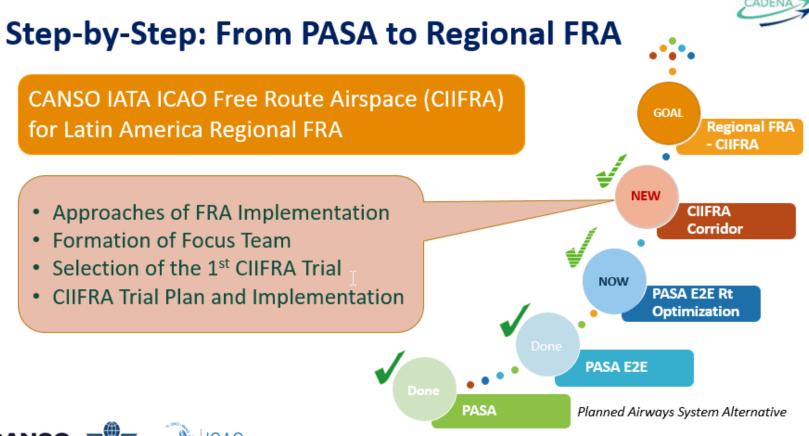
- States
- CADENA
- IATA
- ICAO


Working Collaboratively - CIIFRA

CADENA IATA ICAO Free Route
Airspace

North American, Central American and Caribbean Working Group (NACC/WG)
Air Space Optimization Task Force

Two Pronged Attack


- End to End route Optimization
- User Preferred Route
- Free Route Airspace

North American, Central American and Caribbean Working Group (NACC/WG)

Air Space Optimization Task Force

Move to Free Route Airspace

PASA

Trial UPR (previously PASA Optimized E2E Routes) In addition to the original 6 Trials, we also have the Trials below:

- MMUN \rightarrow SAEZ (one-way) done on Nov 23, 2022
- SKBO \rightarrow KATL (one way) done on Jan 17, 2023
- MPTO ← KLAX (one month) Nov 25 -Dec 25, 2022
- KATL ↔ SCEL Dec 1, 2022 Feb 28, 2023
- KATL ↔ SAEZ Dec 1, 2022 Feb 28, 2023

DAL conducted couple more KATL-SAEZ Trials to add more op routes

North American, Central American and Caribbean Working Group (NACC/WG)
Air space Optimization Task Force

Results Track A

The CANSO-IATA-ICAO Free Route Airspace (CIIFRA)

Trial UPRs Benefit Data

As of: January 12, 2023

	Baseline Flight Plan Route vs Trial UPRs
	Reported Data Projected to 1-Year Savings
Savings:	
Flight min	19,535 min
Fuel (<u>lb</u>)	3,806,672 <u>lb</u>
CO2 (kg)	6,273,658 kg
Cost (\$ USD)	\$ 3,260,444

Results Track B

North American, Central American and Caribbean Working Group (NACC/WG)
Air Space Optimization Task Force

Estimation of 1-year savings based on 12 days of data obtained from Steps 0, 1, 2, and 3

KATL-SPJC-KATL DAL151/DAL150

	Baseline vs UPR				
Savings	12 Day	1 Year			
Flight min:	116	3,528			
Fuel (lb):	12,479	379,570			
CO2 (kg):	17,887	544,057			
Cost (\$):	15,325	466,138			

Mexico's SDR Trial – UAL Benefits

			Sa	ved		Per Flight				
	No.	Time (min)	Fuel (lb)	CO2 (kg)	Cost (\$)	Time (min)	Fuel (lb)	CO2 (kg)	Cost (\$)	
SBGR-KIAH	20	42.0	13,360	41,416	7,644	2.1	668	2,071	382	
SAEZ-KIAH	46	59.0	22,437	69,555	12,390	1.3	488	1,512	269	
SBGL-KIAH	28	57.0	10,451	32,398	9,918	2.0	373	1,157	354	
SPJC-KIAH	6	6.0	1,547	4,796	1,044	1.0	258	799	174	
SCEL-KIAH	41	53.0	12,060	37,386	9,222	1.3	294	912	225	
SKBO-KIAH	8	19.0	2,258	7,000	1,843	2.4	282	875	230	
SEQM-KIAH	11	26.0	2,889	8,956	2,522	2.4	263	814	229	
MGGT-KIAH	3	9.0	969	3,004	1,800	3.0	323	1,001	600	
Total	163	271.0	65,971	204,510	46,383					
	1 Year	1,626	395,826	1,227,061	278,298					

NOTE: To calculate cost benefits, equipment types were taken into the consideration.

Mexico's SDR Trial – DAL Benefits

SENEAM SDR Data (DAL - through October 15, 2022)

			Sav	ed		Per R	light		
	No.	Time (min)	Fuel (Ib)	CO2 (kg)	Cost (\$)	Time (min)	Fuel (lb)	CO2 (kg)	Cost (\$)
KLAX-MROC	6	15	3,440	4,931	2,773	2.5	573	822	462
KLAX-MSLP	2	2	299	429	311	1.0	150	214	155
Total	8	17	3,739	5,359	3,084				
	1 Year	517	113,728	163,012	93,805				

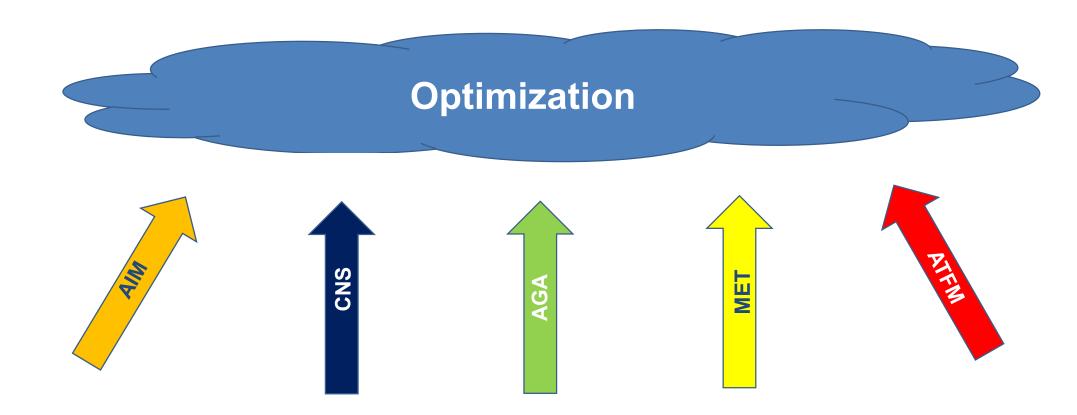
NOTE: To calculate cost benefits, equipment types were taken into the consideration.

Mexico's SDR Trial – AMX Benefits

SENEAM SDR Data (AMX - through November 15, 2022)

, 2022		Saved				Per Flight		
No.	Time (min)	Fuel (kg)	CO2 (kg)	Cost (\$)	T (min)	Fuel (kg)	CO2 (kg)	Cost (S)
9	34.0	1,891	5,976	4,951	3.8	210	664	550
21	26.0	1,009	3,188	3,427	1.2	48	152	163
14	84.0	3,407	10,766	11,194	6.0	243	769	800
44	144.0	6,307	19,930	19,572				
1 Year	1,168	51,157	161,655	158,749				
the price of	Jet A1 was approx	imately \$816	per metric t	onne. This e	guates to	about \$0.82	per KG	
	No. 9 21 14 44 1 Year	No. Time (min) 9 34.0 21 26.0 14 84.0 44 144.0 1 Year 1,168	No. Time (min) Fuel (kg) 9 34.0 1,891 21 26.0 1,009 14 84.0 3,407 44 144.0 6,307 1 Year 1,168 51,157	No. Time (min) Fuel (kg) CO2 (kg) 9 34.0 1,891 5,976 21 26.0 1,009 3,188 14 84.0 3,407 10,766 44 144.0 6,307 19,930 1 Year 1,168 51,157 161,655	No. Time (min) Fuel (kg) CO2 (kg) Cost (\$) 9 34.0 1,891 5,976 4,951 21 26.0 1,009 3,188 3,427 14 84.0 3,407 10,766 11,194 44 144.0 6,307 19,930 19,572 1 Year 1,168 51,157 161,655 158,749	No. Time (min) Fuel (kg) CO2 (kg) Cost (\$) T (min) 9 34.0 1,891 5,976 4,951 3.8 21 26.0 1,009 3,188 3,427 1.2 14 84.0 3,407 10,766 11,194 6.0 44 144.0 6,307 19,930 19,572 1 Year 1,168 51,157 161,655 158,749	No. Time (min) Fuel (kg) CO2 (kg) Cost (\$) T (min) Fuel (kg) 9 34.0 1,891 5,976 4,951 3.8 210 21 26.0 1,009 3,188 3,427 1.2 48 14 84.0 3,407 10,766 11,194 6.0 243 44 144.0 6,307 19,930 19,572 1 Year 1,168 51,157 161,655 158,749	No. Time (min) Fuel (kg) CO2 (kg) Cost (\$) T (min) Fuel (kg) CO2 (kg) 9 34.0 1,891 5,976 4,951 3.8 210 664 21 26.0 1,009 3,188 3,427 1.2 48 152 14 84.0 3,407 10,766 11,194 6.0 243 769 44 144.0 6,307 19,930 19,572

NOTE: To calculate cost benefits, equipment types were taken into the consideration.


Overall Benefits

	All phases included
Savings:	
Flight min	26,374 min=33 round trips KATL-SPJC
Fuel (lb)	4,808,578 lb
CO2 (kg)	8,369,443 kg= 20,774,678 miles driven by
	average car*
Cost (\$ USD)	\$ 4,257,434

^{*} USA EPA

What's Next?

How do we support optimization?

AIM

- Enhancing AIRAC publishing cycles
- Make publications digital
- Publication of Electronic Flight Procedures
- Cost of AIPs
- eTOD
- Flight Planning REJ (Format) / FF-ICE Update (AIDC-TF)

CNS

- Synchronize and Harmonize Communication & Surveillance
- Surveillance data sharing/ redundancy for surveillance and communications.
- Regional Gap Analysis
- Network communication for ATS
- Explore alternative technologies i.e., Space-based VHF
- Estimates or CPL information for traffic in FRA
- Capability of ATM systems
- Digital ATIS

AGA

- Analysis/inputs for airport planning and design.
 - Airports master planning ATM inputs.
 - Airports Coordinate construction/maintenance projects
 - Airport Airside/Landside balance and harmonization
- High speed taxi/exits.
- Utilizing airports for CDM (ATFM-CDM).
- Collaboration Technical/Operational details
 - Lighting and Ground Aids (Approach)
 - Ongoing Obstacle Analysis
 - PCN Value

MET

- Standardized Weather Reports
 - Volcanic Ash
 - Concentration Charts
 - METAR Ash Report Accuracy and Standardization
 - Airport Contingency Procedures i.e., Ash contamination Assessment/Removal
- Weather forecast and updates given from an aviation perspective
- Space Weather
- Special Weather Report Requirements for Temperature (SPECI)
- Digital ATIS
- Turbulence, Icing reports

ATFM

- Availability of ATFM Tactical Resources
- Common ATFM procedures and terminology (Doc 9971)
- Data Sharing amongst all stakeholders (Agreement & Implementation)
 - LOA's
- Data Driven Approach
 - Set Measurable Targets (KPIs)
- Real time Airport /Sector Capacity display
- Post event review