BEYOND INTERFERENCE Integration of 5G in civil aviation

Capt. José Antonio Ruiz

IATA Regional Director Operations, Safety and Security, The Americas

Aviation industry **technology** can either benefit from investments already made by telecom - or pay to catch up

\$637 USD Million – just for Rad Alt

Technologically the telecommunications industry is looking at the aviation industry in a rear-view mirror.

5G Pace of Change

- 5G coverage will roll out rapidly to cover 71% of the global population by 2027
- 5G will account for 46.4% of all telecom connections by 2027
- 5G will connect 29.4 billion Internet of Things (IoT) devices globally in 2030

5G: The Fastest Growing Generation of Wireless Cellular Quarters to achieve comparable growth – 5G and LTE

3 ICAO LATAM/CAR 5G Workshop

Key Message #2

	<1GHz	3GHz 40	GHz 5	GHz 6GHz		24-30GHz	37-50GHz	64-71GHz	>95GHz	
•	900MHz 2.5/2.63Hz 600MHz (2x35MHz) (2x3MHz) (841/n41)	3.1-3.45GHz 3.45-3.55GHz 3.7. 3.55-3.7GHz 3.98GHz	4.94- 4.99GHz	5.9-71GHz	Po	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6/3Hz 37.6-40/3Hz 47.2-48.2/3Hz 57	464 <u>GHz 64-71G</u> Hz	>953Hz	-
•	600MHz (2x35MHz)	3.475-3.65 GHz 3.65-4.03	Hz	5.9-7.1GHz	tent	26.5-27.5GHz 27.5-28.35/3Hz	37-37.6GHz 37.6-40GHz 57	-64GHz 64-71GHz		•
	700MHz (2x30 MHz)	3.4-3.8GHz		5.9-6.4GHz	ial n	24 <u>5-27.50</u> Hz		57-66(3Hz		
÷	700MHz (2x30 MHz)	3.4.3.8GHz		5. <u>9-6.4GHz</u>	ew:	<u>269Hz</u>		57-66(3Hz		#
-	700MHz (2x30 MHz)	3.4-3.8/3Hz		5.9-6.4GHz	spec	263Hz		57-66(3Hz		-
	700MHz (2x30 MHz)	3,46-3,803Hz		5.9-6.4GHz	ctrur	263Hz		57-66(3Hz		0
	700MHz (2x30 MHz)	3.6 <u>-3.89</u> 4z		5. <u>9-6.4GHz</u>	n fo	26 <u>.5-27.50</u> Hz		57-66/3Hz		0
۲	2.5/2.6GHz 700MHz 2GHz (n1) (841/n41)	3.3.3.6342	3 <u>3360Hz</u> 4 <u>850Hz</u>				40.5-43.5(3Hz			0
۲	7 <u>00/800MHz</u> 2.3-2 <u>.39</u> GHz	3.4- 3.42- 3.7- 3.42GHz 3.7GHz 4.0GHz	4.72- 4.820Hz	5.9-7.1GHz	ad	25.7. 26.5. 28.9- 26.50Hz 28.90Hz 29.50Hz	37GHz	57-64(3Hz		۲
0	700/800MHz 2.3 GHz	3.6-4.1GHz	4.54.93Hz	5.9-6.4GHz	vano	2 <u>7-29.5</u> GHz		57-66GHz		0
۲	600MHz (2x40 MHz) 700MHz (2x30 MHz)	3 <u>3-3.670</u> +2			ced	24.25-27.53Hz				
*		3.4 <u>-3.70Hz</u>		5.96.4GHz		2 <u>4.25-29.50Hz</u>	<u>30GHz</u>	57-66GHz		*

5G Needs More Spectrum

As demonstrated by the USA FCC $% \left({{{\rm{AS}}} \right) = 0.05} \right)$

avionic interference is not a limitation for some spectrum regulators

4 ICAO LATAM/CAR 5G Workshop

28th February 2023

The future of aviation is characterized by:

Minimal tactical human intervention

Making secure, reliable, **communications** a fundamental requirement

5 ICAO LATAM/CAR 5G Workshop

ENABLING 5G INNOVATION LEADERSHIP THROUGH USE CASE-DRIVEN COLLABORATION

by Leila Z Ribeiro (MITRE), Thierry Klein (Nokia), Luiz A DaSilva (Virginia Tech), Attila Takacs (Ericsson), Prasanth Ananth (Nokia), Salvatore D'Oro (Northeastern University), Dipesh Modi (MITRE), Rick Niles (MITRE), Izabela Gheorghisor (MITRE)

MITRE-ENGENUITY

By 2025, the number of cellular - connected DRONES will total

6.5 million

Telecommunications Industry 5G Areas of Impact

Out of the box thinking required

Opportunities include transitioning certain functions of crewed aviation systems to commercial 5G services including secure ground communications and certain surveillance and navigation functions Uncrewed Aircraft Systems (UAS): 5G will enable operations beyond visual line of sight (BVLOS)

Telecommunications Industry 5G Solutions to Aviation Challenges

Reliable C2 communications

A key challenge for UAS is the need to improve the connectivity and reliability of the Command and Control (C2) channel

The utilization of 5G capabilities for C2 channel is expected to improve connectivity compared to existing methods

Telecommunications Industry 5G Solutions to Aviation Challenges

Collision avoidance

A key challenge is the need to detect and avoid (DAA).

The utilization of **5G** increases DAA reliability and allows new methods for drone position broadcasting, drone -todrone communications, and potentially utilizing the cellular 5G network as a ground -based surveillance systems (GBSS).

Telecommunications Industry 5G Solutions to Aviation Challenges

Tracking and Geofencing

5G increases **reliability** and reduces C2 **latency** to ensure that a UAS will not breach a **No-Fly-Zone (NFZ)**

28th February 2023

Use Case – Remote Operations

Using 4G / 5G infrastructure, engineers created NFZs which network connected drones interacted with

Engineers were able to create air restrictions remotely from London, UK, for flights being conducted in Jaen, Spain

5G latency - remote drone operations

Average latency <60ms

This suggests that the **5G** solution is sufficiently capable of communicating commands to drones without allowing them to make significant headway into restricted airspace, even when separated from the pilot / server by large geographical distances

Example of network connected drone response to an NFZ

Upon entering Zone -1, the drone operator receives an alert, informing them of the approaching UAV NFZ, and offering an opportunity to change course with ample time.

As a precautionary measure, if a given UAV ignores the warning and **enters Zone -2**, an automatic command will be sent to the drone, forcing it to hover and preventing the drone actually entering the NFZ.

This is accompanied by a warning, informing the operator that remedial action has taken place.

In a dynamic scenario where a NFZ is created in a region where a UAV happens to be operating (Zone-3), an automatic command will be issued to the drone forcing it to land immediately.

Passengers today, flightcrew soon?

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR COMMUNICATIONS NETWORKS, CONTENT AND TECHNOLOGY

The Director-General

Brussels, CNECT B4

MANDATE TO CEPT TO UNDERTAKE TECHNICAL STUDIES ON THE POTENTIAL USE OF 5G TECHNOLOGY AND ON MAKING THE USAGE OF THE NETWORK CONTROL UNIT (NCU) OPTIONAL ON BOARD MCA ENABLED AIRCRAFT

CEPT REPORT 81 - Page 10

CEPT Report 81 Report from CEPT to the European Commission in response to Task 1 of the Mandate "Study and assess conditions to operate 5G non-AAS connectivity for MCA in the 1800 MHz (1710-1785 MHz and 1805-1880 MHz) frequency band" and Task 2 of the Mandate "Study and assess whether, and under what conditions, the usage of an NCU in MCA operations could be made optional" Report approved on 05 November 2021 by the ECC

14 ICAO LATAM/CAR 5G Workshop

Cooperative Airspace Environment

Sharing intent, trajectory, even weather data for better and more automated airspace management

28th February 2023

The future desired state can only be achieved through pragmatic evolution of aircraft and ground based CNS

Combined with sustainable progression in ANSP business models

Risks & Challenges

- Continued and growing Radio Frequency Interference (RFI) with existing avionic technology.
 - ➢ 6G is on the horizon potential impact to aircraft weather RADAR.
- Technological innovation moves at a faster pace than the civil aviation industry has traditionally been able to absorb.
- Steep Learning Curve for both aviation and telecom industries.
- If aviation lags further behind the telecommunications industry in political and technological engagement, we may find ourselves as secondary stakeholders when seeking continued (and potentially new) spectrum access.

