Traffic Management Initiative (TMI)

- Technique used to manage demand with capacity in the NAS
- Properly coordinated and implemented TMI contribute to the safe and orderly movement of air traffic
- Any TMI creates an impact; consider this impact and implement only those initiatives necessary to maintain system integrity
- Maintaining the integrity of the NAS employs the least restrictive methods available to minimize delays
TMI Process

Process for all Traffic Managers

Explore TMI with entire system consideration

Make plans on how transition out of TMI when Exploring
Type of TMI’s

Altitude – Tunneling, Capping, Low Alt ARR/DEP
Miles-in-trail (MIT)
Minutes-in-trail (MINIT)
Fix Balancing
Airborne Holding
Sequencing Programs – DSP, ESP, ASP, TMA/TBFM
* ReRoutes – Playbooks, Adhoc
* Ground Delay Programs (GDP)
* Collaborative Trajectory Option Program (CTOP)
* Airspace Flow Programs (AFP)
* Ground Stops (GS)

* ATCSCC implemented TMI’s
What TMI do you apply?

Duration of Constraint

Characteristics of Constraint

- How predictable is the impacting condition
 - Thunderstorms, Snow, Wind
 - Automation
 - Construction

Ability to impact demand

- How long will it take for TMI to affect demand

What mix of TMIs meet system needs
Miles-In-Trail

Used to manage flows
– Airport, Arrival Fix
– Sector, Airway

How are they determined
– Experience
– FEA evaluation

* MIT impact are not taken into consideration for demand predictions.
Routes

Tactical
- Locally developed

Strategic
- System wide

Playbook

Code Departure Routes (CDR)
Types of ReRoutes

Departure/Arrival Time defined (ETD/ETA)

Flow Constraint Area (FCA) defined
Sequencing Programs

Ground Sequencing – GDP, AFP, TBFM, CTOP, EDCT, DSP, ESP, Call for Release

Airborne Sequencing – ASP, TBFM, Speed, Vector, Holding
• Interaction of TMIs
 – GDP and MIT
 – GDP and Routes
 – GDP and AFP
 – AFP and Routes
 – CTOP