ADS-B via Low Earth Orbiting Satellites
Benefits Assessment

Jeff Dawson
Director, Operational Support

NAM/CAR ANI/WG/1
July 2013
Aireon LLC is a joint venture between NAV CANADA and Iridium to finance, develop, deploy and operate a global solution for tracking and monitoring aircraft anywhere in the world by using space-based ADS-B receivers.
Goal

To reduce aircraft separation minima through ADS-B (out) via global Low Earth Orbiting (LEO) Satellites
Space Based ADS-B - Concept of Operation

- Current ADS-B systems are terrestrial based, leaving oceanic and remote airspace without any ADS-B coverage
- Global space-based ADS-B can only be achieved through a low latency interlinked LEO satellite system
 - Delivers true pole-to-pole coverage, with near real-time delivery of “ADS-B Out” data
 - No additional aircraft equipage by using 1090 ES
Coverage Everywhere

Space-qualified ADS-B receiver payloads will be hosted on Iridium NEXT, a constellation of 66 cross-linked LEO satellites.
Initial focus on the NAT Region

- **1,000** flights per day (1,300 peak summer day)
- **350,000** commercial flights per year
- **+23,000** military & GA flights per year
- **85%** of the flights are already ADS-B equipped
- **67%** of flights are Data Link (FANS 1/A) equipped
- **67%** are capable and use Controller Pilot Data Link Communications (CPDLC)
Oceanic Operating Environment

The current operating environment is largely structured and not flexible

Current Track Structure

Great Circle Routes
Communications

- Presently over 60% of the flights on the NAT use CPDLC communications for clearances and change requests
- The remainder use HF voice via Flight Service Stations
Benefits of Data Link

- Electronic processing is fast and accurate
- Messages are clear
- Pre-defined messages avoid ambiguity
- Aircraft avionics automatically send position reports to flight data processing systems
Surveillance and Data Link Communications Benefits

- More efficient flight levels and trajectories
- Greater flexibility in responding to changing conditions (e.g. turbulence, weather and customer schedules)
- Enhanced safety
Current Flight Trajectory

The current longitudinal separation minima (10 minutes) limits the number of aircraft that can obtain a better flight level
Flight Trajectory With ADS-B

ADS-B will improve the opportunities for aircraft to climb to a better flight level, resulting in fuel burn savings.
Current Routing

The current lateral separation minima (60 NM) limits the number of aircraft on the preferred wind tracks.
Routing with ADS-B

ADS-B will support reduced lateral separation minima, allowing more aircraft to fly a greater portion on the better wind tracks.
LEO ADS-B Benefits Assessment

Determine the 2018 (1st year) fuel burn, based on simulation of 600 flights:

1. Base Case with RLongSM & RLatSM
2. ADS-B Case: 15NM longitudinal & 30NM lateral separation
3. Compare the Base Case and ADS-B fuel results
4. Determine the net fuel savings per flight
LEO ADS-B Benefits Assessment
Approach & Assumptions

• The Total Airspace and Airport Modeller (TAAM)—fast time simulation tool was used to calculate fuel
• Based on June 2012 OTS traffic
• Included wind forecasts from the National Oceanic and Atmospheric Administration (NOAA)
• 2018: all aircraft Data Link capable and 90% ADS-B
• 2018: aircraft mix adjusted to retire B747-400s, replace some B767s with 787s
• Fuel computed for Oceanic airspace only, although benefits could accrue beyond.
Annual Gander/Shanwick Benefits

• A fuel savings of 450 litres was estimated per NAT flight after a thorough and conservative assessment of ADS-B benefits. 600 flights were simulated.

• Consistent with IATA members’ savings from the variable speed/Flight Level ENGAGE project.

• Represents less than 2% of the ocean portion of fuel for a transatlantic ADS-B flight (450/26,000 litres).

• Year one benefits estimated at $127 million for 2018.
Global Oceanic ADS-B Benefits
Value for Airlines

- **Billions in Fuel Savings**
 by being allowed to climb to more optimal altitudes and use more efficient routes

- **Return on ADS-B Investment**
 with no additional aircraft equipage costs required

- **Operational Efficiencies**
 including optimized flight paths, altitudes, airspeeds and jet stream use

- **Reduced Emissions**
 through fuel consumption optimization, a key benefit in a potential cap and trade world

- **Enhanced Safety**
 by eliminating service gaps over areas with limited infrastructure or coverage

- **Global Harmonization**
 of different next-generation ATM operating procedures and systems
Aireon ADS-B System Benefits

Safety

• ADS-B provides near real time aircraft position information
• Improves situational awareness, conflict detection and reaction/resolution
• Aircraft would have more flexibility in emergency situations
• Provides ADS-B surveillance source separate from the communications (CPDLC) network sources
• More complete and accurate reporting of aviation occurrences, allowing better management of safety risk and better support of the Safety Management System
Aireon ADS-B System Benefits

Environmental/Efficiency

• More efficient “domestic-like” flight trajectories in oceanic airspace
• More predictable airline cost planning
• Climb/Descend and vary speed to chase wind push and avoid headwinds
• Improve opposite direction and crossing traffic profiles
• Significant worldwide reductions in greenhouse gas (GHG) emissions and carbon footprint
A Strong Relationship with IATA

• International Advisory Committee being formed
 – Eight member committee (1 IATA; 4 airlines appointed by IATA; 3 ANSPs)
 – Will ensure needs of airlines and ANSPs are considered
 – Provide transparency to Aireon customers
 – Build global support for Aireon for regulatory process
 – Provide periodic briefings on program status, operational implementation, benefits analysis, pricing structures, global deployment and regulatory status
 – Enable Aireon to obtain feedback, guidance and non-binding recommendations from the Committee
Regulatory support

• States support of ICAO Air Navigation Conference Recommendation 1/9 to the Assembly which states:

 Recommendation 1/9 – Space-based automatic dependent surveillance — broadcast
 That ICAO:
 – support the inclusion in the GANP, development and adoption of space-based automatic dependent surveillance — broadcast surveillance as a surveillance enabler;
 – develop Standards and Recommended Practices and guidance material to support space-based automatic dependent surveillance — broadcast as appropriate; and
 – facilitate needed interactions among stakeholders, if necessary, to support this technology.

• Canada’s written commitment to support the ADS-B Space-Based initiative

• Continuous briefings on progress to other State and industry representatives on Regulatory aspect
Thank you