Avionics Solutions for ADS-B
What’s Been Done?

Honeywell Bendix King KT-73 Mode S Panel Mount Transponder (DO-260) used in Airservices Australia ADS-B Trials

Honeywell TRA-67A Mode S Transponders have been capable of DO-260 1090ES for several years. Shipping on virtually all Air Transport Types.

Traffic Computer

Honeywell certified TCAS based SmartTraffic™ for use by Airbus for integration of Airborne Traffic Situational Awareness (ATSAW) applications like In Trail Procedure in non-oceanic airspace.

ADS-B Based Surveillance and Data Link for Autopilot Coupled station keeping provided by **Honeywell** MILACAS-FR.

Military is an excellent first adopter and proving ground for demanding applications which can transition to civil sector when appropriate infrastructure (ground and air) in place.
FAA Surface Indicating & Alerting Program (SURF IA)

- FAA Sponsored Program with Honeywell, Jet Blue & Alaska Airlines
- Sixteen Month Program (Nov 2008 - Mar 2010) to:
 - Accelerate RTCA SURF IA standards development by producing an Operational Performance Assessment and Operational Safety Assessment
 - Develop display concepts and indication and alerting algorithms
 - Honeywell human factors evaluation included JetBlue Airways and Alaska Airlines pilots
 - Prototype display, surveillance and alerting functionality
 - Demonstrate the system
 - Demonstrations at Seattle-Tacoma International airport (SEA) and Snohomish County Paine Field airport (PAE) Dec 2009 – Feb 2010
 - Preliminary evaluation of TIS-B compatibility and Effectiveness for SURF IA at SEA
 - Use Honeywell King Air and Sovereign test aircraft
Honeywell Aircraft for SURF IA Demonstrations

King Air C90

LCD Display
Eye-Tracker
Alerting Algorithms & Data Recording
Modified TPA-100A Traffic Computer

Cessna Sovereign

Primus Epic Integrated Avionics
Alerting Algorithms & Data Recording
Modified TPA-100A Traffic Computer

EPIC Displays
Runway Occupied Alert Examples

Caution Alert

Warning Alert
ASSA versus FAROA

ASSA
Airport Surface Situational Awareness

FAROA
Final Approach and Runway Occupancy Awareness

Copyright © Honeywell 2011
Principal Findings

- **Pilot Acceptance:**
 - Generally good Pilot Acceptance
 - Pilots found airport map and traffic display very useful for gaining and maintaining situational awareness
 - Display of “Engaged Traffic” and “Target Velocity Vector” was very useful
 - Pilots prefer ASSA display, but found FAROA acceptable
 - No data to support a requirement for inhibiting indications and alerts during Land and Hold Short Operations (LAHSO)

- **System Performance Observations:**
 - Overall system performed well with some observations/limitations:
 - Some concerns/limitations observed with ADS-B data:
 - Navigation Integrity Code (NIC) and Navigation Accuracy Code for Position (NACp) values reported by aircraft were often outside the limits set for SURF IA
 - Many ADS-B equipped aircraft do not have Heading correctly reported (generally use Track angle, which is reported as zero when aircraft is stationary)
 - ADS-B transmissions were sometimes masked when line-of-sight was blocked
 - Occasionally observed loss of ADS-B signal reception, possibly due to multi-path reflections from hangars and/or large aircraft
Honeywell has developed, integrated, and certified a complete ITP avionics capability STC’d on United Airlines 747-400s.

The system consists of our TPA-100B Traffic Computer with ADS-B In and ITP capability, TRA 67A Transponders with ADS-B Out, and a Goodrich Class 3 SmartDisplay® EFB running Honeywell SmartTraffic™ ITP display software.
What Are We Doing?

Honeywell is modifying the following Mode S Transponders to transmit DO-260B, US NPRM compliant ADS-B Out:

- MST 67A
- TRA-67A
- Primus II
- Primus EPIC
- Primus Apex

Traffic Computer

Honeywell is modifying the TPA 100B to add SURF capability.
What About UAT?

+ Additional “uplink” capacity	- ATC Transponder still required
	- Support for TCAS, SSRs
+ Supported in U.S.	- Common control inputs
+ ADS-B Out and In	- Mode A codes, Ident
+ Lower total cost?	- Global standard is 1090ES
	- Not globally interoperable
	- Need for rebroadcast
	- Requires “timemark” from GPS

+ lower transmit power	+ lower transmit power
+ integral receiver	+ integral receiver
+ design analysis on-going	+ design analysis on-going

Other Considerations

- Other commercial alternatives for broadcast weather
- Avionics solutions for ADS-B In
- Bandwidth for future aircraft densities
- Interoperability issues when operating away from ground station

Choice Driven By Airspace & User Needs
Honeywell ADS-B Capability Planning

Horizon 1
ADS-B Out
- Adding ADS-B Out to production transponders
- Hybrid Surveillance
- Military Station Keeping

Horizon 2
Initial ADS-B In Applications
- Smart Traffic
- Enhanced Visual Separation on Approach
- AIRB
- In Trail Procedure
- SURF

Horizon 3
Advanced ADS-B In Applications
- Flight Deck Interval Management
- SURF IA

Copyright © Honeywell 2011
Conclusion

- **Honeywell is committed to supporting ADS-B globally**
 - Hundreds of ADS-B transponders delivered
 - More research & development underway
 - Helping to develop the global standards for ADS-B
 - Aircraft equipage decisions required for older aircraft

- **Performance-Based Requirements**
 - Exploit DO260 equipage for early applications
 - Align position performance and operational requirements

- **ADS-B is a relatively simple technology**
 - Varying business cases for operators and ANSPs
 - Plans must deliver value to all stakeholders throughout the transition
 - This will accelerate aircraft user adoption and airspace benefits
 - ADS-B In system complexity still in work with Merging and CDTI implementations

 ADS-B is a Key Building Block for ATM Modernization