

Developments in Aircraft Engine Design for Bird Ingestion

ICAO Wildlife Symposium

Montreal, Canada

18 May 2017

Presented by:

Chris G. Demers

Martinair Cargo

Martinair

A United Technologies Company

FAA Bird Requirements Evolution

Increased Regulations due to Industry Study of Bird Populations

Contains No Technical Data Subject to EAR - ITAR

High By-Pass Turbofan Engine

Bird Strike – Typical Fan Blade Damage

Design Process for Bird Strike Mitigation

Computer Modeling

Fan blade design is optimized via computer modeling for bird strike response

Component Testing

Fan blades are lab tested at component level to verify computer model predictions

Component Testing

Fan component test – structural model calibration data and confirmation of fan bird impact response

Jelly Bird

Rig Testing

Fan rotor rig test – confirmation of fan bird impact response

Bird Certification Requirements

- Engine ingestion test bird sizes and quantities are established by federal regulations based on engine size (inlet area)
- For large engines
 - Four medium flocking birds (2.5 lbs.) with core ingestion
 - Bird speed at most critical fan conditions > V1 (takeoff rotation decision speed)
 - All birds ingested within one second
 - Demonstrate sustained operation at ≥75% take-off thrust
 - Provide sufficient power for aircraft ATB/diversion and safe landing
 - One large flocking bird (5.5 lbs.) targeted at critical fan location
 - Bird Speed is 200 knots (230 MPH)
 - Demonstrate sustained operation at \geq 50% take-off thrust
 - Provide sufficient power for aircraft ATB and safe landing
 - One large single bird (8 lbs.) targeted at critical fan location
 - Bird speed is 200 knots
 - Verify safe engine shutdown

Bird Ingestion Test Setup

Bird Ingestion Test – Lights & Cannons 00 2.5 lbs Bir Cannons lbs Bird Cannon ۲ . 2 . . 0 () <u></u> 🛞 🔕 🗌 Contains No Technical Data Subject to EAR - TAR - A

Bird Ingestion Test – Fan Blades & Inlet

Bird Ingestion Test – Birds

Large Bird (8 lbs.) Test

Examples of Turbofan Continuous Design Improvements

- Shroudless fan airfoils
- Automatic surge recovery logic
- Automatic restart logic
- Improved compressor vane retention designs
- Optimized rain/hail/FOD core rejection geometry
- Reduced fan rotor speeds

Continuous Improvement Results

Aircraft Bird Strike Trends (4 year rolling avg.)

Summary

- Regulations have evolved over time to address the bird ingestion into aircraft engines as the understanding of the threat developed, and <u>continue</u> to evolve as we gain more knowledge about the threat.
- Everyone is doing their part to manage avian threats to all aircraft; regulators, manufacturers, airport operators and wildlife managers.
- Pratt & Whitney is proud of the engine advancements that have been achieved to reduce the threat of bird strikes to aircraft flight.
- Pratt & Whitney continues to work side by side with the industry and regulators to further mitigate the bird strike threat to aviation safety.

QUESTIONS?

10000

EIGHT

10///a///a

flygermania.de

0

© Stefan Sonnenberg

D-ADII

F

Developments in Aircraft Engine Design for Bird Ingestion

