ICAO Air Transport Symposium Strategies and Tools for Sustainable Air Transport

# Economic Impact Analysis Methods for Airports

- Case Study in Korea -

The Korea Transport Institute Department of Aviation Policy and Technology

> THE KOREA TRANSPORT INSTITUTE



| Economic Impact Analysis Methods for Airports | THE KOREA<br>TRANSPORT INSTITUTE |
|-----------------------------------------------|----------------------------------|
| Table of Conte                                | ents 🕝                           |
|                                               | Page                             |
| I Research Overview                           | 3                                |
| Economic Impact of the Airport and Assessment | t Items 5                        |
| Economic Impact Analysis Methods              | 8                                |
| IV Airport Impact Case Study                  | 17                               |
| V Conclusion and Policy Proposals             | 27                               |
|                                               | 2                                |









# 1. Research Overview

## Background and Purpose

### 1) Background

✓ Increases in demands for the analysis of airports' economic impact for understanding local businesses and policy formulation

- ✓ Absence of a clear definition of the scope and itemized details of airport impacts
- Lack of detailed analysis method and framework

#### 2) Purpose

- Prepare a local compensation system standard in response to airport noise impacts
- Estimate inter-regional and national impacts for future airport policy formulation
- Proposing an airport categorization system according to the impacts



 $\varPi$ 



THE KOREA TRANSPORT INSTITUTE

- Establish the definition of impact
- Formulate impact items







# II. Economic Impact of the Airport and Assessment Items

## • Establish the definition of impact

- ✓ Internal and external Impacts according to the flow of resources due to the construction or operation of airports
- Internal impact: direct, indirect, linkage impacts

**Direct impact** 

Effects generated as the direct result of airport construction and operation

#### Internal & External Impact

#### **Indirect impact**

Effects generated as the side effects of the direct impacts

#### Linkage impact

 Effects generated by the direct and indirect impacts through a linked industrial supply chain

#### **External impact**

 Cannot be categorized as direct, indirect or linkage impact, but generated through airport construction and operation







## II. Economic Impact of the Airport and Assessment Items

# Formulate impact items

✓ Internal impact: production inducement, generation of added value, Supply issue, generate jobs

External impact: brand value, noise, greenhouse gas emission





Economic Impact Analysis Methods for Airports







## Economic Impact Analysis Methodology

- •Analysis method flow chart
- •Metrication model by assessment
- item
- •Metrication model calibration by
- assessment item
- Development of economic impact analysis system







# III. Economic Impact Analysis Methods

Analysis method flow chart







# III. Economic Impact Analysis Methods Metrication model by assessment item

| Assessment item                   | Metrication model     | Special notes                                                                                                                              |  |  |  |  |  |
|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Production inducement<br>effect   | MRIO                  | Categorized into national and local                                                                                                        |  |  |  |  |  |
| Added value generation<br>effect  | MRIO                  | Categorized into national and local                                                                                                        |  |  |  |  |  |
| Job generation effect             | MRIO                  | No currency value<br>Excluded from the comprehensive impact                                                                                |  |  |  |  |  |
| Supply issue effect               | MRIO                  | Categorized into national and local                                                                                                        |  |  |  |  |  |
| Brand value effect                | IPS Brand Asset model | Only pure airport brand value reflected                                                                                                    |  |  |  |  |  |
| Noise effect                      | Regression model      | Establish a regression model using actual<br>compensation cost<br>Only reflects airports where noise<br>compensation projects are underway |  |  |  |  |  |
| Greenhouse gas<br>emission effect | Unit Cost             | Apply carbon value and existing atmosphere pollution emission methodology                                                                  |  |  |  |  |  |



# III. Economic Impact Analysis Methods Metrication model calibration by assessment item 1) Establish MRIO model

ATRS

✓ Re-categorized to reflect the impact and input parameter such as construction cost, air transport industry sales to the model









III. Economic Impact Analysis Methods
Metrication model calibration by assessment item

#### 1) Establish MRIO model

Estimate the number of employees in each industry in the total business research report as new elements
The standard proposed in this report is applied without modification

Generate employmen t-effect

 Apply and deduce the methodology proposed in the existing theory without modification



Supply Issue



# III. Economic Impact Analysis MethodsMetrication model calibration by assessment item

ATRS

#### 2)Establish brand value effect model



 $\checkmark$  Apply weighted average of the sales during the past three years as  $\epsilon$  financial approach

Apply inflation for the present value

The industry index indicates the brand effect on each industry

✓ Utilize the industry index proposed by Ministry of Commerce, Industry and Energy, Korea Institute of Design Promotion (2002), 「Research on brand value assessment」

✓ Use the air demand forecasting data in <sup>¬</sup>The 4<sup>th</sup> National Mid/Long-Term Airport Development Plan」 to estimate each airport's brand earnings







# III. Economic Impact Analysis Methods Metrication model calibration by assessment item

#### 3) Establish greenhouse gas impact model

Analyze the greenhouse gas savings benefit in the air industry

( $^{\Gamma}$ Transportation Facility Investment Assessment Guideline  $_{\perp}$ : Reflect CO<sub>2</sub> only for the greenhouse gas savings benefit item in the road and railway sector)

✓ Refer to the methodology and "basic unit" used in previous researches

- KOTI's (2008) 「Air Transport Sector Greenhouse Gas Emission Scale Estimation and Management Measure」
- Ministry of Land, Transport and Maritime Affairs' (2009) Transportation Facility Investment Assessment Guideline, Amended Version
- Ministry of Land, Transport and Maritime Affairs and Korea Institute of Construction & Transportation Technology Evaluation and Planning (KICTEP,2010) Transportation Sector Greenhouse Gas Reduction and Comprehensive Management Technology Development J

✓ In this research, we used Tier 1 methodology within the IPCC guideline, which is the clearest and simplest (Currently, to estimate the gas emission in the air transport sector, the 2006 IPCC guideline is used)







# III. Economic Impact Analysis Methods

# Metrication model calibration by assessment item 4) Establish noise impact model

✓ Use regression model (independent variable: A/C mov't, dependent variable: Noise index)

| Forecasting formula                                                                | R <sup>2</sup> | D-W  |
|------------------------------------------------------------------------------------|----------------|------|
| Cost <sub>z</sub> =0.67 x Flight <sub>z</sub> - 165274.7<br>(4.75) (-3.71 <b>)</b> | 0.16           | 1.52 |

Note : ( ) indicates t-value

✓ The noise countermeasure compensation used in specific airports with severe noise problems

| Designated noise problem airport<br>(Noise impact 75WECPNL ~) | Designated notification date |
|---------------------------------------------------------------|------------------------------|
| Incheon Airport                                               | Nov 30 2010                  |
| Gimpo Airport                                                 | Jun 21 1993                  |
| Gimhae Airport                                                | Sep 01 1994                  |
| Jeju Airport                                                  | Jul 01 1993                  |
| Ulsan Airport                                                 | Dec 05 2006                  |
| Yeosu Airport                                                 | Dec 05 2006                  |

Rest of airports excluded from Noise impact model







# III. Economic Impact Analysis Methods Develop economic impact analysis system

#### 1) Comprehensive nationwide impact model

| ✓ The method of simply adding individual impacts facilitates application and |  |
|------------------------------------------------------------------------------|--|
| comprehension                                                                |  |

- ✓ The individuality of the relations between each impact cannot be guaranteed
- Simulation formats can cause confusion in actual application
- The method of reflecting policy makers' opinions simplifies complicated mechanisms, can be applied to reality in various ways
- The CGEmodel is hard to establish, but is important for interpretation

#### AHP Technique (Analytic Hierarchy Process) Used

#### 2) Comprehensive local area impact model







# III. Economic Impact Analysis Methods

Develop economic impact analysis system

#### 3) Result of deducing weights for establishing an impact frame

- ✓ It was analyzed that the direct impact is deemed more important than the indirect impact
- Especially, corporations and non-specialists deemed the direct impact more important
- ✓ Even by the overall average, the importance of direct and indirect impacts were found to be 0.797,and 0.203 each

| Assessn  | nent item                        | Specialist (10) | Corporation<br>(5) | Carrier (5) | Non-<br>specialist (5) | Total |
|----------|----------------------------------|-----------------|--------------------|-------------|------------------------|-------|
| Direct   | impact                           | 0.763           | 0.865              | 0.755       | 0.821                  | 0.797 |
|          | Production<br>inducement effect  | 0.333           | 0.413              | 0.427       | 0.396                  | 0.383 |
|          | Added value<br>generation effect | 0.291           | 0.296              | 0.230       | 0.271                  | 0.277 |
|          | Supply issue effect              | 0.139           | 0.156              | 0.097       | 0.154                  | 0.136 |
| Indirect | t impact                         | 0.237           | 0.135              | 0.245       | 0.179                  | 0.203 |
|          | Greenhouse gas                   | 0.080           | 0.022              | 0.091       | 0.071                  | 0.067 |
|          | Noise                            | 0.059           | 0.088              | 0.079       | 0.082                  | 0.078 |
|          | Brand value                      | 0.098           | 0.025              | 0.075       | 0.026                  | 0.060 |







# Result of case analysis

✓ Cases include 8 int'l airports (excluding Incheon Int'l Airport), and 6 domestic airports

✓ Proposed airport categorization system based on national and local standards based on the developed analysis system

✓ 2010 national standard airport impact categorized into direct, indirect, linkage and external impacts

#### Assessment item result by national impact categorization

(Unit: 0.1 billion won/year)

| 2010               | Assessment<br>item    | GMP    | PUS    | CJU    | KWJ<br>+MWX | CJJ   | TAE   | RSU   | KUV | HIN | USN   | WJU | KPO | YNY | Total            |
|--------------------|-----------------------|--------|--------|--------|-------------|-------|-------|-------|-----|-----|-------|-----|-----|-----|------------------|
| Direct             | Production inducement | 38,752 | 17,923 | 34,832 | 3,210       | 2,857 | 2,548 | 1,411 | 392 | 357 | 2,263 | 157 | 728 | 19  | 105, <b>44</b> 9 |
| Impact             | Supply issue          | 33,423 | 15,455 | 30,128 | 2,779       | 2,472 | 2,205 | 1,223 | 338 | 309 | 1,958 | 136 | 631 | 16  | 91,073           |
| Indirect           | Production inducement | 1,732  | 801    | 1,561  | 144         | 128   | 114   | 63    | 18  | 16  | 101   | 7   | 33  | 1   | 4,720            |
| impact             | Added value           | 392    | 181    | 353    | 33          | 29    | 26    | 14    | 4   | 4   | 23    | 2   | 7   | 0   | 1,069            |
|                    | Supply issue          | 8,959  | 4,143  | 8,076  | 745         | 663   | 591   | 328   | 91  | 83  | 525   | 37  | 169 | 4   | 24,413           |
| Linkage            | Production inducement | 16,571 | 7,663  | 14,937 | 1,378       | 1,226 | 1,093 | 606   | 168 | 153 | 971   | 68  | 313 | 8   | 45,154           |
| impact             | Added value           | 5,781  | 2,673  | 5,211  | 481         | 428   | 381   | 212   | 58  | 53  | 339   | 24  | 109 | 3   | 15,753           |
|                    | Supply issue          | 46,156 | 21,343 | 41,604 | 3,837       | 3,414 | 3,045 | 1,689 | 467 | 427 | 2,703 | 188 | 871 | 22  | 125, <b>76</b> 7 |
| External<br>impact | Greenhouse<br>gas     | 494    | 229    | 446    | 41          | 37    | 33    | 18    | 5   | 5   | 29    | 2   | 9   | 0   | 1,347            |
|                    | Noise                 | 335    | 19     | 19     | -           | -     | -     | 2     | -   | -   | 3     | -   | I   | -   | 377              |
|                    | Brand                 | 1,223  | 740    | 561    | 46          | 40    | 64    | 16    | 3   | 5   | 28    | 2   | 8   | 2   | 2,739            |

Note: 1\$≒1000won





## • Case analysis result

#### 2010, inter-regional production inducement effect result(Unit: 0.1 billion won/year)

The inter-regional airport impact is similar to the national impact results

✓ Impact concentrated on regions connected by routes or housing the given airport

| 2010      | GMP    | PUS    | CJU    | KWJ<br>+MWX | CJJ   | TAE   | RSU   | KUV | HIN | USN   | WJU | KPO   | YNY |
|-----------|--------|--------|--------|-------------|-------|-------|-------|-----|-----|-------|-----|-------|-----|
| Seoul     | 48,674 | 2,408  | 5,397  | 495         | 445   | 359   | 219   | 60  | 48  | 306   | 30  | 103   | 3   |
| Incheon   | 2,484  | 643    | 1,857  | 169         | 190   | 146   | 75    | 21  | 13  | 81    | 12  | 42    | 1   |
| Gyeonggi  | 4,129  | 1,362  | 2,945  | 270         | 313   | 226   | 120   | 33  | 27  | 172   | 21  | 65    | 2   |
| Daechun   | 257    | 89     | 232    | 21          | 37    | 14    | 10    | 3   | 2   | 11    | 1   | 4     | 0   |
| Chungbuk  | 349    | 129    | 299    | 27          | 3,093 | 19    | 12    | 3   | 3   | 16    | 1   | 5     | 0   |
| Chungnam  | 2,957  | 406    | 2,360  | 217         | 200   | 160   | 96    | 27  | 8   | 51    | 10  | 46    | 1   |
| Gwangju   | 226    | 98     | 538    | 3,717       | 14    | 13    | 56    | 12  | 2   | 12    | 1   | 4     | 0   |
| Jeonbok   | 336    | 155    | 785    | 128         | 21    | 20    | 48    | 444 | 3   | 20    | 1   | 6     | 0   |
| Jeonnam   | 4,295  | 1,655  | 4,292  | 414         | 236   | 271   | 1,766 | 61  | 33  | 210   | 14  | 78    | 2   |
| Daegu     | 300    | 202    | 289    | 27          | 19    | 2,938 | 12    | 3   | 4   | 25    | 1   | 41    | 0   |
| Gyungbuk  | 1,169  | 629    | 1,029  | 95          | 75    | 107   | 42    | 12  | 13  | 80    | 5   | 832   | 1   |
| Busan     | 1,143  | 20,784 | 1,033  | 94          | 64    | 82    | 42    | 12  | 31  | 211   | 4   | 24    | 0   |
| Ulsan     | 5,959  | 4,437  | 5,062  | 465         | 311   | 433   | 206   | 57  | 88  | 2,979 | 20  | 124   | 2   |
| Gyungnam  | 2,609  | 1,399  | 2,250  | 206         | 170   | 186   | 91    | 25  | 413 | 185   | 11  | 54    | 1   |
| Gangwon   | 186    | 69     | 135    | 12          | 11    | 10    | 6     | 2   | 1   | 9     | 179 | 3     | 21  |
| Jeju      | 88     | 51     | 40,939 | 23          | 6     | 5     | 22    | 6   | 1   | 7     | 0   | 2     | 0   |
| Sum total | 75,159 | 34,516 | 69,441 | 6,382       | 5,205 | 4,989 | 2,824 | 780 | 689 | 4,374 | 313 | 1,432 | 36  |

Note : The vertical column means region, the horizontal row means airport





## • Case analysis result

2010, inter-regional added value generation effect result(Unit: 0.1 billion won/year)

| 2010      | GMP           | PUS   | CJU            | KWJ<br>+MWX | CJJ   | TAE | RSU | KUV | HIN | USN | WJU | KPO | YNY |
|-----------|---------------|-------|----------------|-------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| Seoul     | 8,503         | 562   | 1,116          | 102         | 122   | 79  | 45  | 12  | 11  | 71  | 7   | 23  | 1   |
| Incheon   | 5 <b>38</b>   | 135   | 375            | 34          | 53    | 32  | 15  | 4   | 3   | 17  | 3   | 9   | 0   |
| Gyeonggi  | 917           | 294   | 580            | 53          | 90    | 49  | 24  | 7   | 6   | 37  | 5   | 14  | 1   |
| Daechun   | 49            | 16    | 41             | 4           | 10    | 3   | 2   | 0   | 0   | 2   | 0   | 1   | 0   |
| Chungbuk  | 55            | 20    | 44             | 4           | 700   | 3   | 2   | 0   | 0   | 3   | 0   | 1   | 0   |
| Chungnam  | 763           | 72    | 545            | 50          | 61    | 40  | 22  | 6   | 1   | 9   | 2   | 11  | 0   |
| Gwangju   | 46            | 21    | 102            | 538         | 3     | 3   | 12  | 2   | 0   | 3   | 0   | 1   | 0   |
| Jeonbuk   | 62            | 30    | 143            | 26          | 4     | 3   | 10  | 63  | 1   | 4   | 0   | 1   | 0   |
| Jeonnam   | 1,1 <b>69</b> | 440   | 1, <b>04</b> 9 | 100         | 74    | 70  | 266 | 14  | 9   | 56  | 4   | 20  | 0   |
| Daegu     | 49            | 35    | 44             | 4           | 4     | 458 | 2   | 0   | 1   | 4   | 0   | 9   | 0   |
| Gyungbuk  | 159           | 87    | 128            | 12          | 12    | 16  | 5   | 1   | 2   | 11  | 1   | 126 | 0   |
| Busan     | 206           | 3,545 | 167            | 15          | 13    | 14  | 7   | 2   | 7   | 48  | 1   | 4   | 0   |
| Ulsan     | 1,715         | 1,307 | 1,305          | 120         | 105   | 118 | 53  | 15  | 26  | 567 | 5   | 34  | 1   |
| Gyungnam  | 380           | 229   | 298            | 27          | 28    | 26  | 12  | 3   | 69  | 28  | 2   | 8   | 0   |
| Gangwon   | 36            | 13    | 24             | 2           | 3     | 2   | 1   | 0   | 0   | 2   | 28  | 1   | 3   |
| Jeju      | 20            | 11    | 5,926          | 4           | 1     | 1   | 5   | 1   | 0   | 1   | 0   | 0   | 0   |
| Sum total | 14,666        | 6,816 | 11,888         | 1,096       | 1,284 | 917 | 483 | 133 | 136 | 863 | 57  | 262 | 7   |

Note : The vertical column means region, the horizontal row means airport





## Airport categorization by impact

#### 1) National standard airport categorization result

✓ Define the impact by unit operation cost in the national impact as the marginal impact, and categorize airports by marginal impact according to operation cost

✓ This result is the basic research before attempting airport categorization for future policy formulation. May be subject to change.

✓ Also, the result serves as a proposal for categorization

#### \* 2010, result of airport categorization by marginal impact (weighted value applied)

| Classification                       | PUS | CJU | KWJ+MWX | CJJ | TAE | RSU | KUV | HIN | USN | WJU | KPO | YNY |
|--------------------------------------|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Marginal Production<br>inducement    | В   | В   | Α       | Α   | Α   | С   | С   | С   | Α   | С   | С   | С   |
| Marginal added value                 | В   | В   | Α       | A   | Α   | С   | С   | С   | Α   | С   | С   | С   |
| Marginal Supply issue                | В   | В   | Α       | Α   | Α   | С   | С   | С   | Α   | С   | С   | С   |
| Marginal job generation              | В   | В   | Α       | Α   | Α   | С   | С   | С   | Α   | С   | С   | С   |
| Marginal Greenhouse gas<br>and Noise | В   | В   | С       | Α   | Α   | С   | С   | С   | Α   | С   | С   | С   |
| Marginal brand value                 | В   | В   | С       | С   | Α   | С   | С   | С   | С   | С   | С   | С   |
| Marginal comprehensive<br>impact     | В   | В   | Α       | A   | A   | С   | С   | С   | Α   | С   | С   | С   |

Note: A category: low operation cost, high regional diffusion effect, B category: high operation cost, high regional diffusion effect. C category: low operation cost, low regional diffusion effect, D category: high operation cost, low regional diffusion effect





## Airport categorization by impact

1) National airport categorization result (2010)



< Example of airport categorization based on Production inducement>

the second second reported along the second program

< Example of airport categorization based on Greenhouse gas and noise>

William a company of many adopt the de and a source





IV. Airport Impact Case Study

## Airport categorization by impact

1) National airport categorization result (2010)











# V. Conclusion and Policy Proposals

# Conclusion(1)

✓ In order to improve the methodology of analyzing airports' economic impacts, establish the concept of economic impact, formulate impact assessment items, and develop a consolidated analysis system

✓ Establish an airport categorization system by applying the developed analysis system to actual domestic airports

✓ Propose impact items including brand value generation and additional impacts such as greenhouse gas and noise, as well as domestic and overseas impacts

Consolidate national impacts by using the AHP technique





# V. Conclusion and Policy Proposals

ATRS

# Conclusion(2)

✓ Simultaneously, determine the distribution of airport impacts through interregional impacts

 $\checkmark$  The results of this research will propose the policy directionalities for quantitative airport assessment and devise compensation systems based on the noise impacts

 $\checkmark$  Prepare the basis for judging whether the airport should be built, considering the interrelation among airport

✓ Propose a systematic airport policy development standard based on the airport categorization system







# V. Conclusion and Policy Proposals

## Policy Measures

 Prevent inadequate use of budget by ensuring efficient investment – use for new airport feasibility assessment

✓ Basis for the local community members of areas impacted by airport noise – demand compensation and countermeasures to the local governments

✓ Use for estimating the scale of reinvestment or airport policies according to airport categorization by cost and impact



