

Implementation – Airspace user views

Practical implementation steps before application of the Global Reporting Format Capt John A. Lande, ICAO GRF2019 March 27th 2019

Facts about Norwegian

→World's 5th largest low-cost carrier

→Third largest low-cost carrier in Europe

→11,000 employees

→Carried 37 million passengers in 2018

→One of the world's fastest growing airlines

 \rightarrow We believe in affordable fares for all

Our fleet

→One of the youngest and greenest fleets in the world with an average age of 3.8 years

- \rightarrow A fleet of 164 aircraft
 - → 25 B787-9
 - → 8 B787-8
 - → 113 B737-800WSFP1
 - → 18 B737- 8 MAX

→Norwegian has around 220 aircraft on order

Our Destinations; 500+ routes to 150+ destinations

 \rightarrow We have extensive experience in operating on contaminated runways.

- \rightarrow Many of our northern destinations have stable winter conditions over a long period of time.
- → From 1st Oct 2018 to 14th Mar 2019 our **B737 fleet** made 97794 landings in all, of which **20.6%** where on non-dry & non-wet runway surfaces.

→93% of non-dry & non-wet landings where in Scandinavia and Finland.

→52% of non-dry & non-wet landings where in Norway alone.

 \rightarrow The numbers are based on pilot reports from the aircraft EFB.

→ Pilots are requested to report experienced braking action and the airport reported braking action in their mandatory landing report.

→The new GRF will impact our operation!!

- →However, we welcome the changes and appreciate the work done by ICAO to standardize the reporting format globally.
- →The key words are standardization and harmonization.

Although I am representing Norwegian Air today...

 \rightarrow ...all European airlines face the same challenges.

 \rightarrow The following has been reviewed and agreed with by the following airlines;

Main stakeholders

→Airport operators evaluate the runway condition.

→ They are the pilots eyes on the ground.

→The pilots receive the RWYCC and consult their aircraft manuals.

→ The aircraft manufacturers provide performance information iaw GRF / TALPA.

→Information chain; AIS, ATC.

→ Overseen by the **Regulators**.

To make this work, all stakeholders must be on the «same frequency»

→We need to talk the same language and have a common goal;→ Safe aircraft operation.

→That is the strength of the RCAM, which will be the heart of the GRF.
→ A common starting point.

→The reporters need to know WHY they are reporting and HOW the reports will be used.
 → Not just to fulfill a requirement, but knowing there are actually recipients that are going to use the information.

→THIS MEANS TRAINING! ...and time is short(!)

→From an (EASA) Pilot's point of view;

- The main change will be the abandon of the Measured Friction Coefficient reports.
- →We are familiar with the ICAO SNOWTAM format, and the SNOWTAM codes.
- →We know that the current SNOWTAM codes are based on Measured Friction **Coefficient Values.**
- \rightarrow The SNOWTAM CODES will be re-named RWYCC and will be based on the RCAM.

- →The friction "numbers", with two decimals, have been with us for more than 50 years, and are perceived as scientific values by pilots.
 - > Norway stopped giving measured friction values more than 10 years ago, and went through the transition that the rest of you will experience after 2020.

 \rightarrow Pilots will still ask for the "numbers".

→ "How can I know what friction to expect if I do not get any numbers?"

→ "Can I have them anyway? I know you have them!"

Pilots...

- →Still have to perform dispatch calculations prior to departure.
- →Still have to do "at the time of arrival" assessments.
- →EASA operators still need to dispatch to a contaminated runway, not only DRY/WET.
- →No change in HOW you do it, but the results might be different.

]					
]				CALCOLATE	
737	7-800WSF	P/CFM56-7B26 LA	NDING			
Wind:		0 KT	App	o CLB Grad:	2.5 %	
		-5 °C	Fla	os:	40 5 KT	
		990 hPa		ef Inc:		
		62000 KG	RW	Only taken into	account for Advisory Information Output 0 M	
		ADDITIONAL INPUT	App	Mode:	MANUAL	
ta		_	Ble	eds:	ON	
62000			Anti		ENG A/I + RESIDUAL ICE	
135 1829 / 2003		W/C: Ze	ero	Landing F	l: 40 El: 15	
l:	1590			Str MLM:	66360	
rd:	4.78	Recommended M Crosswind 20 kts	Recommended Maximum Crosswind 20 kts		72585 MEVR_01	
ird:	7.12 22	BCT		G/A N1:	69507 F 95.26	
NAVBLUE EFB Version Datab 19.1.1 Datas			atabase: NAVBL ataset: D03057	.UE 190319_193840, S028	, CM LDG Ver 19.1.1, BLM016.00	

Pilots...

→Need to know that there is a difference in the two calculations, and that the results can differ for the same conditions.

 \rightarrow At the time of departure calculation. → No changes visible for pilots.

 \rightarrow At the time of arrival calculation.

- \rightarrow Revised wheel braking μ
- → Adjusted flare distance
- → Factored calculated distance

- → Also need to be familiar with the Runway Condition Assessment Matrix.
- → They need to be familiar with the assessment criteria.
- → However, the RWYCC may not fit the runway surface description.

	Assessment criteria	Downgrade assessment cri	teria	
Runway condition code	Runway surface description	Aeroplane deceleration or directional control observation	Pilot report o runway braking action	
6	• DRY	-		
5	 FROST WET (The runway surface is covered by any visible dampness or water less than 3 mm deep Less than 3 mm depth: SLUSH DRY SNOW WET SNOW 	Braking deceleration is normal for the wheel braking effort applied AND directional control is normal.	GOOD	
4	-15°C and Lower outside air temperature: • COMPACTED SNOW	Braking deceleration OR directional control is between Good and Medium.	good to Medium	
3	 WET ("Slippery wet" runway) DRY SNOW or WET SNOW (Any depth) ON TOP OF COMPACTED SNOW <i>3 mm and more depth</i>: DRY SNOW WET SNOW WET SNOW <i>Higher than -15</i>°C outside air temperature¹: COMPACTED SNOW 	Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced.	MEDIUM	
2	3 mm and more depth of water or slush: • STANDING WATER • SLUSH	Braking deceleration OR directional control is between Medium and Poor.	MEDIUM T POOR	
1	• ICE ²	Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced.	POOR	
0	WET ICE ² WATER ON TOP OF COMPACTED SNOW ² DRY SNOW or WET SNOW ON TOP OF ICE ²	Braking deceleration is minimal to non- existent for the wheel braking effort applied OR directional control is	LESS THA POOR	

→ The RWYCC may have been subject to upgrade or downgrade.

→ The table cannot always be read horizontally.

→ This could be reflected in the Situational Awareness section of the GRF.

Runway condition description	Runway condition code (RWYCC)
DRY	6
FROST	5
WET (The runway surface is covered by any visible dampness or water less than 3 mm deep.	
SLUSH (less than 3 mm depth)	
DRY SNOW (less than 3 mm depth)	
WET SNOW (less than 3 mm depth)	
COMPACTED SNOW	4
(Minus 15°C and lower outside air temperature)	
WET ("Slippery wet" runway)	3
DRY SNOW (3 mm and more depth)	
WET SNOW (3 mm and more depth)	
DRY SNOW ON TOP OF COMPACTED SNOW (Any depth)	
WET SNOW ON TOP OF COMPACTED SNOW (Any depth)	
COMPACTED SNOW (Higher than minus 15°C outside air temperature)	
STANDING WATER (Water of depth equal to or greater than 3 mm.	2
SLUSH (3 mm and more depth)	
ICE	1
WET ICE	0
WATER ON TOP OF COMPACTED SNOW	
DRY SNOW OR WET SNOW ON TOP OF ICE	

Pilots...

→ Be stabilized!!

- → Based on the result of the calculations, where on the runway will the aircraft stop?
 - → Longer/Shorter?
 - → Friction limited?
 - \rightarrow Give feedback!
 - → Situational Awareness!

Aircraft manufacturers...

→Need to update their performance information iaw the new GRF.

→When a pilot receives a RWYCC he will translate this into a Braking Action that he is familiar with.

 \rightarrow He will then consult his manuals or electronic support tools (EFBs, Performance tools etc.).

Category A Brak	es	787 Elich	t Crore	Oneration	os Manual			
		/o/ rugi	a crew	operation	is Manual			
		ADVIS	ORY I	NFORM	ATION			
Normal Conf		n T an dia	- Diet					
Flore 20	guratio	n Landh	ig Dist	ance				
raps 50								
		LA	NDING D	ISTANCE A	ND ADJUSTI	MENTS (M)		-
	REF	WT	ALT	WIND	SLOPE	TEMP	VREF	R
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	ADJ	ľ
		DED	PER	PER	DED 164	DED 109C	DED	┢
BRAKING	170000 KG	5000 KG	1000 FT	10 KTS	DOWN/	ABV/	SETS	0
CONFIGURATION	LANDING	ABV/BLW	ABOVE	HEAD/	UP	BLW	ABOVE	F
	WEIGHT	170000 KG	SEA	TAIL	HILL	ISA	VREF30	[
			LEVEL	WIND				
Medium Repor	ted Brak	ing Actio	n					
MAX MANUAL	1885	45/-40	65	-110/380	50/-45	50/-50	80	1
MAX AUTO	1905	50/-40	65	-110/385	45/-40	50/-50	90	1
AUTOBRAKE 4	2085	50/-40	70	-115/405	30/-20	60/-60	115	
AUTOBRAKE 3	2295	60/-50	80	-125/440	30/-35	65/-65	120	
AUTOBRAKE 2	2450	70/-60	95	-135/465	50/-50	70/-70	115	1
AUTOBRAKE 1	2565	75/-65	105	-150/505	65/-60	75/-75	115	2
Medium to Poo	r Report	ted Brakin	ng Actio	on				
MAXMANUAT	2090	65/-50	00	-135/485	65/-55	65/-65	05	2
MAX AUTO	2100	65/-50	90	-135/485	70/-60	65/-65	05	1
AUTOBRAKE 4	2175	60/-45	85	-130/440	50/-35	60/-60	105	1
AUTOBRAKE 3	2355	60/-55	80	-135/445	45/-45	65/-70	115	
AUTOBRAKE 2	2485	70/-60	95	-140/470	60/-60	70/-75	105	1
AUTOBRAKE 1	2585	75/-65	105	-150/505	75/-65	75/-75	115	2
Poor Reported	Braking	Action			•	•		_
MAYMANTIAT	2600	75/ 65	100	100/720	225/ 125	75/75	05	
MAY ALTO	2090	75/-65	100	-190/730	223(-133	75/-75	95	-
AUTORPAKE 4	2700	75/-60	100	-190/730	230/-140	75/-75	100	- 4
AUTOBRAKE 3	2780	75/-65	100	-190/730	215/-130	80/-80	115	
AUTOBRAKE 2	2855	80/-70	100	-195/750	215/-140	80/-85	105	
AUTOBRAKE 1	2000	85/-70	120	-200/760	230/-145	85/-85	115	1
Horobhing I	2500	0.5/-70	120	200/100	200-140	03/-03	110	

Max Manual and autobrake data valid for auto speedbrakes. For max manual braking and manual speedbrakes, increase reference landing distance by 30m. For autobrake and manual speedbrakes, increase reference landing distance by 25 m.

All reference distances and adjustments are increased by 15%.

Includes a distance from threshold to touchdown associated with a flare time of 7 seconds.

 \rightarrow Will be the Pilot's eyes on the ground.

→Part of the responsibility is shifted from the cockpit to the ground.

 \rightarrow To achieve this training is vital.

 \rightarrow Authorization is expensive and it takes time.

→The RCAM will form the basis.

→A proper trained and competent airport operator must be able to upgrade and downgrade.

→Supporting tools can be different ways of treating the runway, friction measuring equipment or other innovations like airborne or ground based "runway surveillance equipment".

Runway condition description	Runway condition code (RWYCC)
DRY	6
FROST	5
WET (The runway surface is covered by any visible dampness or water less than 3 mm deep.	
SLUSH (less than 3 mm depth)	
DRY SNOW (less than 3 mm depth)	
WET SNOW (less than 3 mm depth)	
COMPACTED SNOW	4
(Minus 15°C and lower outside air temperature)	
WET ("Slippery wet" runway)	3
DRY SNOW (3 mm and more depth)	
WET SNOW (3 mm and more depth)	
DRY SNOW ON TOP OF COMPACTED SNOW (Any depth)	
WET SNOW ON TOP OF COMPACTED SNOW (Any depth)	
COMPACTED SNOW (Higher than minus 15°C outside air temperature)	
STANDING WATER (Water of depth equal to or greater than 3 mm.	2
SLUSH (3 mm and more depth)	
ICE	1
WET ICE	0
WATER ON TOP OF COMPACTED SNOW	
DRY SNOW OR WET SNOW ON TOP OF ICE	

Airport operators

- → In Norway, the State owned aerodrome operator has developed a self-imposed training program.
- → All the personnel performing runway state reporting have been through a comprehensive training program.
- The training program ends with both a written and a practical test.
- → The authorization is then valid for 4 years.

- →Norway reports estimated friction instead of measured friction.
- →The quality of the reports have increased every winter season.
- →We definitely see the need of a competent runway condition reporter.
- →We also see the need of further development of supporting tools to help the evaluation process.

The new format may cause some challenges

FROZEN SAND

→Norway has used a method of applying warm sand (frozen sand) on the runway.

→Heated pre-wetted sand is spread on an icy surface when runway temperature is sub-zero.

→The sand will be fixed to the runway and creates a sandpaper like surface.

 \rightarrow This has proved to be very effective.

From an operator's perspective

When converting to the new Runway Condition Report, it is not acceptable to lower the quality of the service given.

The regulations must account for future innovations/methods that can assure an equivalent level of safety.

Thank you for your attention!

