Overview of the Aviation System Block Upgrades (ASBUs) Concept and PBN

Vince Galotti
Deputy Director, Safety Standardization & Infrastructure
Air Navigation Bureau
International Civil Aviation Organization
The 30’000 Feet View

- Air traffic growth expands two-fold once every 15 years
- Growth can be a double-edged sword
- Challenge is how to achieve both safety and operational improvements
 - Globally harmonized
 - Environmentally responsible
 - Cost-effective
Developing Tomorrow’s Aviation System

- Investment certainty is required for:
 - Operators
 - Infrastructure providers
 - Equipment manufacturers
- Regulatory approval process must be outlined
 - Support States in introduction of significant changes
Developing Tomorrow’s Aviation System

- ICAO developed a plan

- Setting the stage for global interoperability
Aviation System Block Upgrades

- Define global aviation system block upgrades
- For interoperability purposes
- Independent of when and where specific ATM improvement programmes are introduced

Why is this approach proposed?
The Reality of Our System Today...
A Team Effort
What is a Block Upgrade?

Measurable Operational Improvement

Air & Ground Standards & Procedures

Air & Ground Equipment / Systems + Approvals

Positive Business Case
We Can Benefit From What Is Already Out There...
4 Blocks Upgrades are Proposed

- **Block 0**: Available now
- **Block 1**: 2018
- **Block 2**: 2023
- **Block 3**: 2028+
A Block is Made Up of Modules...
...So a Block is Scalable to Meet Regional or Local Needs
Integrated Planning through Block Upgrades

Performance Improvement Areas

- Airport Operations
- Globally Interoperable Systems and Data
- Optimum Capacity and Flexible Flights
- Efficient Flight Path

Block 0 (2013)

Block 1 (2018)

Block 2 (2023)

Block 3 (2028 onward)
Increased Runway Throughput Through Optimized Wake Turbulence Separation

Summary

Improved throughput on departure and arrival runways through optimized wake turbulence separation minima, revised aircraft wake turbulence categories and procedures.

Main performance impact as per Doc 9854

KPA-02 – Capacity, KPA-06 – Flexibility.

Operating environment/Phases of flight

Arrival and departure

Applicability considerations

Least complex – Implementation of revised wake turbulence categories is mainly procedural. No changes to automation systems are needed.

Global concept component(s) as per Doc 9854

CM – conflict management

Global plan initiatives

GPI-13: Aerodrome design
GPI 14: Runway operations

Main dependencies

Nil

Global readiness checklist

<table>
<thead>
<tr>
<th>Standards readiness</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avionics availability</td>
<td>N/A</td>
</tr>
<tr>
<td>Ground systems availability</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedures available</td>
<td>2013</td>
</tr>
<tr>
<td>Operations approvals</td>
<td>2013</td>
</tr>
</tbody>
</table>
Block 0:
Capabilities within our Grasp Today

- Block 0 initiatives must leverage on existing on-board avionics
- 3 Priorities have been agreed to:
 - Performance Based Navigation (PBN)
 - Continuous Descent Operations (CDO)
 - Continuous Climb Operations (CCO)
Performance Improvement Areas

Airport Operations

Globally Interoperable Systems and Data

Optimum Capacity and Flexible Flights

Efficient Flight Path

Block 0
Today & beyond; based on operational need

- Optimization of approach procedures
- Increased runway throughput through WT separation
- Improve traffic flow through runway sequencing
- Safety and efficiency of surface operations
- Improved airport operations through airport-CDM

- Digital aeronautical information management
- Increased interoperability, efficiency and capacity
- MET information supporting enhanced operation

- Improved flow performance through network planning
- Improved ops. through enhanced en-route trajectories
- Initial capability for ground surveillance
- Air traffic situational awareness (ATSA)
- Improved access to optimum flight levels
- ACAS improvements
- Increased effectiveness of ground based safety nets

Integrated AMAN/DMAN/SMAN

Full FF-ICE And More

Traffic Complexity Management

Full 4D – TBO And More
Benefiting from All the Modules

- There is added value in using all modules
- States should view modules in B0 & B1 as critical:
 - Formalizing a minimum track
 - They will allow for benefits down the road in B2 & B3
The Cost of Not Implementing

- Focusing on what it will cost if modules are not implemented:
 - Increased risk of serious incidents and accidents
 - Negative impact on operations
 - Environmental repercussions
 - etc.

<table>
<thead>
<tr>
<th>Baseline Fuel Consumption</th>
<th>Post-Operational Improvement Fuel Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline minus Post-operational Consumption equals Fuel Saved
Desired Outcomes of AN-Conf/12

- Endorsement of:
 - Global Air Navigation Plan, as unified planning mechanism

- Agreement on:
 - Integrated work programme
 - Structure and management of “Expert Groups”

- Recommendations on ICAO technical work programme:
 - Endorsement for short term Block Upgrades
 - Agreement on Block 1

- Clear strategic direction for future infrastructure:
 - Endorsement for medium and long term Block Upgrades
 - Agreement on Blocks 2 & 3
ICAO

www.icao.int/anconf12