Basic Access Control and Extended Access Control in ePassports

Tom Kinneging

ISO/IEC JTC1 SC17 WG3/TF5

New Technology Working Group (NTWG)
TAG/MRTD 18

18th Meeting of the Technical Advisory Group on Machine Readable Travel Documents
History

Rembrandt van Rijn
History

Document as proof of identity

- Protected against
 - Counterfeit
 - Manipulation
 - Copying and cloning
- Physically
- Electronically
Physical security

- Materials
- Security printing
- Optical variable elements
- Personalization
Electronic security

➢ Against counterfeit and manipulation
 – Passive Authentication
➢ Against copying and cloning
 – Active Authentication
Passive Authentication
Against counterfeiting and manipulation

- Electronic signature
 - Chip data is authentic
 - Chip data has not been changed

- Cryptographic key pair
 - Private key for signing
 - Public key for verification
Passive Authentication

Key distribution

State A

CSCA

DS

State B

PKD

Inspection System
Active Authentication
Against copying and cloning

- Challenge response mechanism
 - Genuine combination chip and data
- Cryptographic key pair
 - Private key in chip’s secure memory
 - Public key in Data Group 15
Privacy

- No problem for conventional passport
 - You cannot read a closed book

- Introduction RF chip
 - Skimming
 - Reading data from the RF chip
 - Eavesdropping
 - Reading along the chip-reader communications
Basic Access Control

Inspection System
Basic Access Control

Inspection System
Basic Access Control

Strong or weak?
- Skimming no problem
- Eavesdropping risks can be diminished
 - Random document number

Lifetime
- Computer power increases
- Planned evaluation, investigate successor
Extended Access Control

- Doc 9303 recommends a more strict protection of sensitive data
 - Finger print
 - Iris
- To be realized
 - At a national or bilateral level
 - Through Encryption or Extended Access Control
Extended Access Control

- Two protocols
 - Chip Authentication
 - Terminal Authentication
Chip Authentication

- Strong secure communications
 - First BAC
 - Replace BAC keys
- Implicit verification of genuine chip
 - Like Active Authentication
- Can be used on its own
Terminal Authentication

- After Chip Authentication
- MRTD chip verifies access rights
 - Verify certificates present in I.S.
 - Grant access to sensitive data
- Certificate issued by MRTD issuer
Terminal Authentication
Certificate distribution

State A
CVCA
DV
IS
IS
IS

State B
CVCA
DV
IS
IS
IS

State C
CVCA
DV
IS
IS
IS

Certificate distribution
Terminal Authentication

Opens up other possibilities

- Access rights verification for
 - Updating chip contents
 - Writing visa information
 - Writing travel records
Summary

➢ Passive authentication
 – Enables the inspection system to verify that
 • The chip contents is authentic
 • The chip contents has not been altered

➢ Active authentication
 – Enables the inspection system to verify that
 • The chip contents is not a copy
 • The authentic chip is in the document
Summary

Basic Access Control
- Enables the chip system to verify that
 - The passport is opened for inspection

Extended Access Control
- Enables the chip to verify that
 - The inspection system is authorized to read sensitive data
Summary

Chip Authentication
- Can be used on its own for
 - Strong secure communications
 - Alternative to Active Authentication

Terminal Authentication
- Authorized access
 - Access to sensitive data
 - Writing and updating chip contents
Action by the TAG

- Investigate BAC successor
- Continue study to global standard for EAC
 - based on implementation experiences in Europe
- Recognize Chip Authentication
 - as stand-alone protocol
- Recognize Terminal Authentication
 - as general authentication mechanism
Thank you for your attention

Tom Kinneging
ISO/IEC JTC1 SC17 WG3/TF5

New Technology Working Group (NTWG)
TAG/MRTD 18

18th Meeting of the Technical Advisory Group on Machine Readable Travel Documents