

High-level roundtable: a new vision for the future

Jean-Francois Brouckaert,

Chief Scientific Officer – Clean Sky Joint Undertaking (www.cleansky.eu)

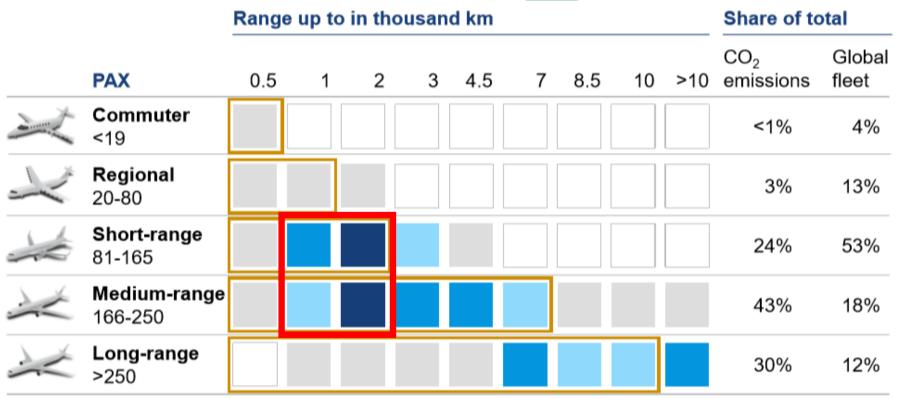
Hydrogen Powered Aviation by 2050

Study focus

Evaluation of **potential**, **technical and economical feasibility** of hydrogen for aviation

Modeling of implications on aircraft design, airport infrastructure and fuel supply chains

Recommendation of a R&I roadmap

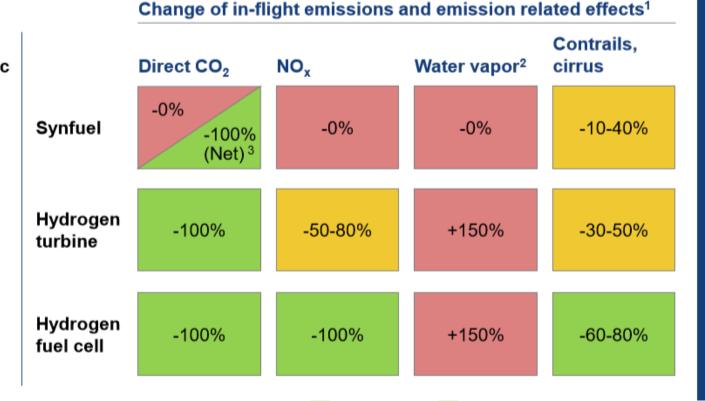


Methodology

Potential of hydrogen propulsion evaluated in 5 fleet segments

STOCKTAKING 2020

5 segments defined for evaluation, covering ~90% of total emissions


Climate Impact

H2 propulsion has no CO2 emissions and biggest potential to reduce climate impact*

Ongoing scientific debate about full climate impact, in particular:

- Contrail/cirrus formation
- Aggregate measure

Total climate impact could be 2 to 4 times compared to CO₂ emissions alone

Climate impact reduction potential⁴

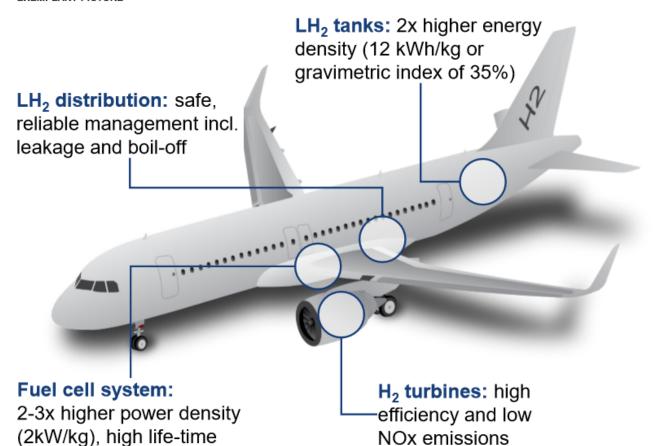
-30-60%³

-50-75%

-75-90%

- No full LCA considered, but assuming decarbonized production and transportation of fuels in 2050
- 10 times lower climate impact than from CO₂ emissions
- Net CO2 neutral if produced with CO2 captured from the air
- Measured in CO₂ equivalent compared to full climate impact of kerosene-powered aviation

* High Uncertainty on non-CO2 effects!



Aircraft Design

4 Technology Improvements could enable H2-aircraft

TIMEFRAME 2035

EXEMPLARY PICTURE

Example result of simulation of H2powered short-range aircraft

Mission: 2,000 km, 165 PAX, Mach 0.72

Propulsion: parallel hybrid of H₂ turbines and fuel cell system

Evolutionary design: adjusted for LH₂ systems, **+10% longer fuselage**

100% decarbonization

75% climate impact reduction

-5% energy demand

15 years to entry-into-service

Three major infrastructure challenges

Refueling challenge most significant – Significant investment required

Can be accommodated in prevailing infrastructure

Updates of infrastructure / operations required

Full overhaul of infrastructure / operations required

Until 2040 (hydrogen 15% of fleet)

5% of global hydrogen demand

Can be **served with LH₂ trucks** from central production sites or on-site

From 2040 to 2050 (hydrogen 40% of fleet)

10% of global hydrogen demand
At-scale distribution requires pipelines to airport

2 Required LH₂ airport infrastructure

H₂ production and distribution

for aviation

Centralized liquefaction (unless on-site production) **Truck-based** refueling

No major infrastructure updates

Onsite liquefaction

At-scale refueling systems

Larger gate sizes and on-ground traffic changes

3 Refueling times

Within usual turnaround times for shorter range flights

New safety regulations required for parallel operations

Extends beyond usual turnaround times for longer range flights¹

No major roadblocks in early ramp-up years

Significant but manageable challenges in scale-up years

1. Considering similar flow rates like kerosene and double the amount of refuelling points

ICA(

Significant Research & Innovation required : H₂-Agenda

4 main research areas for roadmap

2020		2028		20:	35 205
Main milestones	and co	of tech. feasibility certification of mmuter aircraft ort-range aircraft prototype	Safe and	n-range aircraft prototype efficient airport refueling setup	Prototype of revolutionary long-range aircraft Large scale refueling infrastructure
	LH ₂ tanks				
Components	Fuel cell systems				
	H ₂ turbines				
Aircraft system	Onboard LH ₂ distribution components/system				
	Commuter prototype		Medium-range	e prototype	
	Regional, short-range prototype Revo			lutionary long-range prototype	
Infrastructure	Efficient refueling systems		At-scale liquefaction and LH ₂ handling		
		Safety measures and parallel operations			
	Airport and aircraft refueling setup			LH ₂ hydrant refueling	
/ Regulatory framework	Climate impact measures				
	Market activation mechanisms				

Technology

Hydrogen is feasible

to power aircraft with entry into service as early as 2030-2035 for short-range segments

Economics

Less than 20 **USD** per PAX

additional costs on a H2powered short-range flight -20% cheaper on medium-range to generate same climate impact than synfuels by 2040

Climate impact

Zero CO₂ and 70% reduction

of climate impact by converting 40% of the fleet to H₂ with 15% less global renewable energy needs for the sector in 2050

Research & Innovation

First prototype by 2028

required for short-range significant investments for R&I needed now to meet 2050 target

High risk / **High reward**

opportunity for a game changing impact

H₂ not the single fuel of the future

synfuels are likely remain the preferred solution for Long Range even beyond 2050

High uncertainty on climate impact particularly for non-CO2 effects

Research, **Demonstration** and Investments needed now!

Thank You

ICAO Headquarters Montréal

European and North Atlantic (EUR/NAT) Office Paris

Western and Central African (WACAF) Office

Dakar

Middle East (MID) Office

Asia and Pacific (APAC) Office Bangkok

Asia and Pacific (APAC) Sub-office Beijing

North American Central American and Caribbean (NACC) Office Mexico City

> South American (SAM) Office

Eastern and Southern African (ESAF) Office Nairobi

