

Future Surveillance Capabilities

Mie Utsunomiya Technical Officer, CNSS (CNS and Spectrum), ICAO HQ

ADS-B (ADS-B IN) Capabilities/applications

ASUR

	Block 0	Block 1	Block 2	Block 3	Block 4
1	ADS-B	Space-based ADS-B	Evolution of ADS-B and Mode S	(New non-cooperative surveillance system (medium altitudes))	Future evolution of ADS- B and MLAT
2	MLAT		(New community based surveillance system for airborne aircraft (low and higher airspace))		
3	SSR-DAPS			ADS-	B version 3

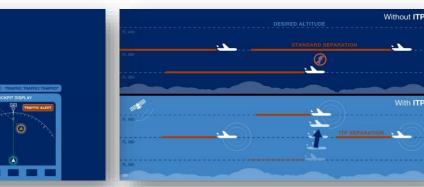
Note.- The ASBU framework applied to surveillance contains the following ASBUs: 2 operational ASBUs ACAS and CSEP (for cooperative separation), and 2 technological ASBUs ASUR and SNET. In relation to future surveillance applications, this PPT includes ASUR, ACAS and CSEP.

CSEP OVERVIEW

(during operations; departure, arrival and enroute)

	Block 1	Block 2	Block 3	Block 4
1	AIRB	IM procedure	Interval Management (IM) Procedure with complex geometries	Airborne separation
2	VSA	(Cooperative separation at low altitudes)	(Remain well clear (RWC) functionality for UAS/RPAS	
3	(Performance based Lateral longitudinal Separation Minima)	(Cooperative separation at Higher airspace)		
4	(Performance Based Lateral Separation Minima)		Described in the Manual of Airborne	
			Surveillance Applications (Doc 9994).	

Airborne Traffic Situational



ADS-B Traffic Awareness System (ATAS)

X

Visual Separation on Approach (VSA) RANGE 20 UAE288 1 **Copyright Boeing**

Cockpit Display of Traffic Information- Assisted Visual Separation (CAVS)

Source: FAA

ADS-B-In Capability: Interval Management (IM)

- IM consists of a set of ground and flight-deck capabilities used in combination by air traffic controllers and flight crews to more efficiently achieve a precise interval between aircraft in a stream of traffic
- Reducing inter-aircraft spacing variance will yield more efficient use of runway capacity, while also enabling aircraft to remain on their Performance-based Navigation (PBN) procedures more frequently
- IM functionality requires ADS-B Out (all versions) and ADS-B In equipage

Operational Concept

- Controller instructs flight crew to achieve / maintain an assigned spacing goal (time or distance) relative to another aircraft
- Flight crew uses FIM avionics to manage aircraft speed to achieve instructed ATC objective.
- FIM stands for Flight deck IM and refers to IM equipment on board.

To see the IM storyboard animation, go to <u>https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc</u> /library/Storyboard/detailedwebpages/im.html

C/ o

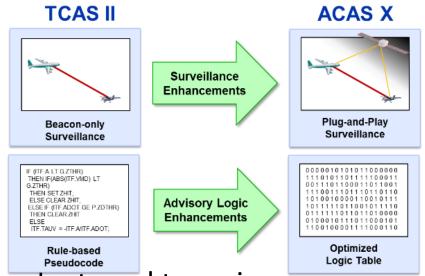
New collision avoidance system (ACAS X family)

GANP ASBU Element ACAS-B2/1

ACAS OVERVIEW

(During operations; departure, arrival and enroute)

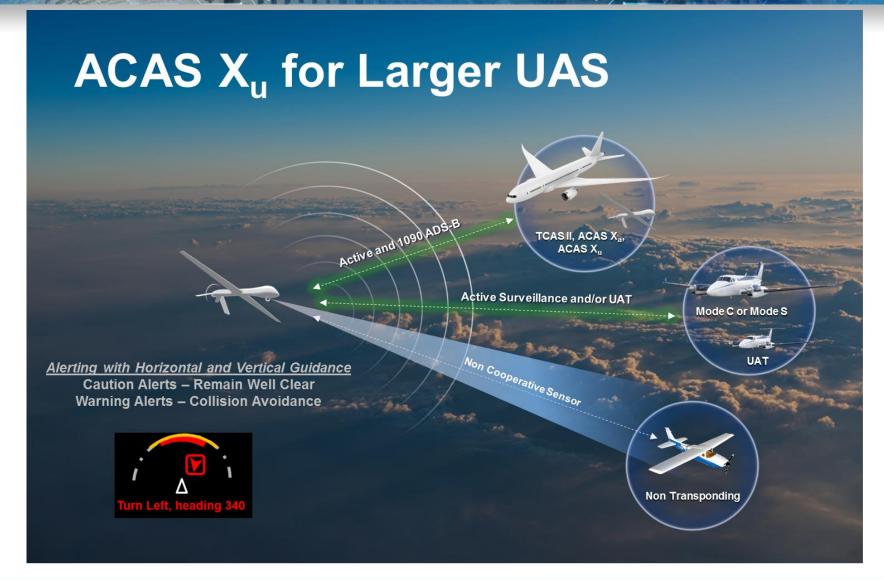
	Block 0	Block 1	Block 2	Block 3
1		ACAS improvements	New collision avoidance system	
2			(New collision avoidance system DAA RPAS)	


Work under way by SP/ACSG. Described/or to be described in Doc 9863

Source: FAA

ACAS Xu is part of the ACAS X family

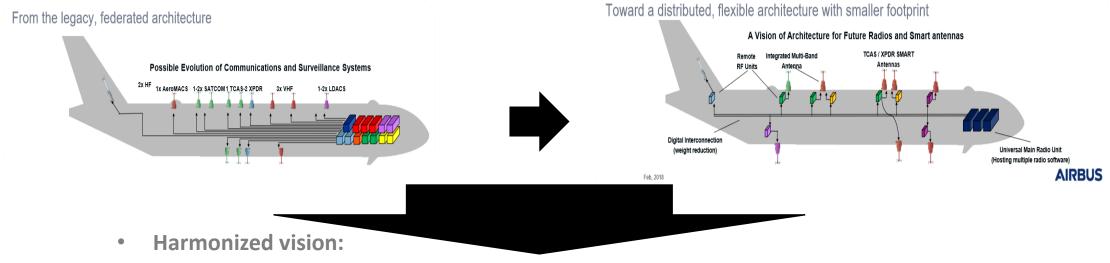
- ACAS X common features:
 - Easy addition of surveillance sources
 ⇒ improved tracking
 - Native extended hybrid surveillance
 ⇒ reduced spectrum load


 Optimization of resolutions through tools that can be tuned to various sensors and aircraft performance

ICAO EMERGING

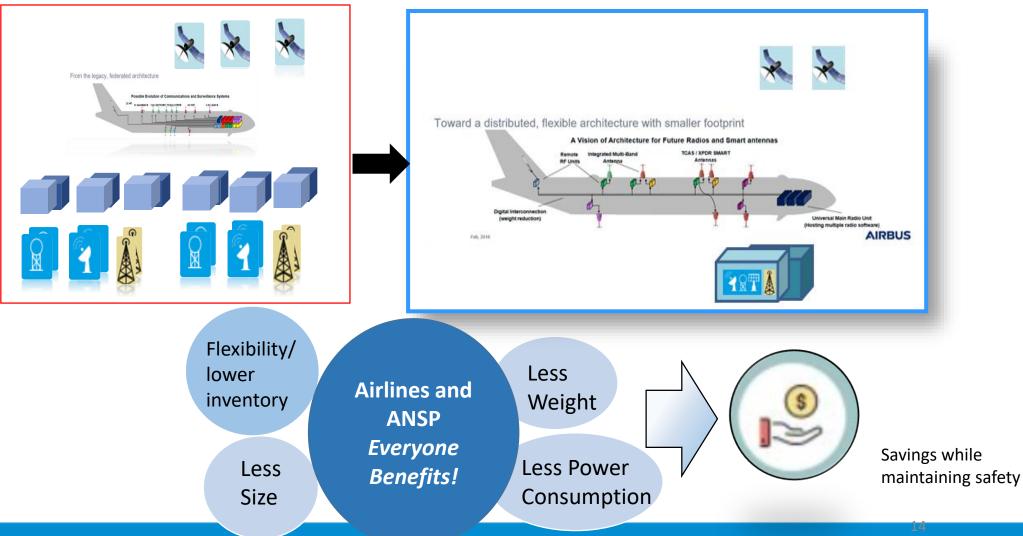
TECHNOLOGIES SYMPOSIUM

Real-time resolution selection taking into account uncertainties
 ⇒ improved safety with less unnecessary alerts


Source: FAA

Integrated CNS & Spectrum

State-of-the-art: Integrated CNSS


Aircraft makers are already rethinking the avionics for Communications, Navigation and Surveillance:

- ✓ An ICNSS Roadmap or Master Plan required to maximize benefits
- State-of-the-art:
 - ✓ Flexible hardware solutions possible for CNS (software defined)
- Operational benefits to be realized:
 - ✓ Flexible applications possible, depending on airspace requirements

Who benefits from ICNSS?

Efficient spectrum usage is a requirement

- Aeronautical mobile allocations are worldwide
 - Unlike majority of other mobile spectrum
 - Worth <u>billions and billions of \$\$\$</u>
- Aeronautical spectrum seen as underutilized
 - Robust, proven, but outdated systems
 - Low spectrum efficiency

- If we do Nothing, Business As Usual, Then:
 - Forced to share with non-aeronautical users
 - Forced to accept fleet wide upgrade of aeronautical CNS to accommodate sharing
 - Forced to accept inferior service w/o safety culture

A better way:

- Be a good/sustainable spectrum user, and satisfy requirements of ITU Radioregulations
- Adapt and adopt on our own terms, ahead of time

Establishment of the Integrated CNS and Spectrum Task Force (ICNSS-TF)

ICNSS-TF establishment:

- in accordance with AN-Conf/13 Recommendation 2.2/1 c),
- as further confirmed by 40th Assembly
- to:
- > launch a study, built on a multi-disciplinary view of the C N S elements and frequency spectrum
- evolve the required CNS and frequency spectrum access strategy and systems roadmap in the short, medium and long term, in a performance based and service-oriented manner
- > ensure that <u>CNS systems remain efficient users of the spectrum resource</u>

Also, note AN-Conf/13 Recommendation 5.5/3:

calls upon ICAO to review and enhance its Standards-making processes in order to meet the requirements of the rapid pace of technological development.

CURRENT STATUS OF ICNSS-TF WORK

• The ICNSS-TF is currently working on the development of **global concept for Integrated Communications**, Navigation, **Surveillance (CNS) and Spectrum** which would include the following deliverables:

ICAO EMERGING SURVEILLANCE TECHNOLOGIES SYMPOSIUM

- a) a roadmap of CNSS evolution including a blueprint for CNS systems evolution; and
- b) a new and streamlined framework for CNSS standardization which delivers:
 - 1) a clear proposal for a minimal, performance-based approach to the SARPs in Annex 10 Aeronautical Telecommunications; and
 - 2) a clear proposal on how to develop and validate the technical specifications based on industry inputs for global interoperability.

For more information, refer to the Integrated CNSS project: <u>Pages - Integrated</u> <u>CNSS Project (icao.int)</u>

ICNSS & SARPS Streamline Project The Project **INTEGRATED CNS and Spectrum Task Force** SECRETARIAT PROJECT TEAM **CNSS Standards Task ICNSS roadmap Task** Develop CNSS roadmap on Define Performance Standards vs flexible and continuing technical **Technical Specifications** evolutio End goal (TBD Minimal Global Technical **ICNSS roadmap Essential) SARPs** Specification framework framework Mid-Term - Long-Term

Also, relevant WPs (such as A41-WP/58 TE/5) will be discussed under the agenda item 31 (Aviation Safety and Air Navigation Standardization) at the 41st Assembly (27 Sep to 7 Oct 2022). (Assembly 41st Session (icao.int)



The Assembly WP: ICNSS

ICAO EMERGING

TECHNOLOGIES SYMPOSIUM

A41-WP/58 TE/5 explains the progress made by the Integrated CNS and Spectrum Task Force.

Action: The Assembly is invited to: a) note the progress made by ICAO to date, related to the ICNSS project; b) encourage States, Int Orgs and industry to support the continued development and implementation of a medium to long-term roadmap for the evolution of ICNSS and a new streamlined framework for CNS and frequency spectrum standardization; and c) task ICAO to continue to <u>develop and finalize a</u> <u>new streamlined framework for CNS and</u> <u>frequency spectrum standardization</u>.

THANK YOU

